ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN 15804

AquaPlus PRINS Pre insulated System

EPD registration number:	S-F
Publication date:	20
Valid until:	20

-P-03735 2022-02-28 2027-02-28

interplast.

CONTENTS

ENVIRONMENTAL PRODUCT DECLARATION DETAILS	3
PRODUCT INFORMATION	5
Product Name and Description	5
LCA INFORMATION	6
Declared Unit	6
Database and LCA software used	6
System Boundaries	
Time & Geographical coverage and Data Quality	7
Cut-off criteria	8
System Diagram	8
Content Declaration	8
ENVIRONMENTAL PERFORMANCE	
LCA Results	11
Interpretation of LCA Results	
REFERENCES	15

ENVIRONMENTAL PRODUCT DECLARATION DETAILS

Programme information				
Programme Operator:	The International EPD [®] System			
	EPD International AB			
0 delara est	Box 210 60			
Address: SE-100 31 Stockholm				
	Sweden			
Website:	www.environdec.com			
E-mail:	info@environdec.com			

PCR Information

CEN standard EN 15804+A1:201	3 serves as the Core Produ	ct Category Rules (PCR)				
Product category rules (PCR):	PCR 2012:01, Version 2.34 "Construction Products and Construction Services" JN CPC Ver.2 code 36230 "Tubes, pipes and hoses, and fittings therefore, of plastics"					
PCR review was conducted by:	IVL Swedish Environmental Research Institute, Secretariat of the International EPD System Appointed PCR Moderator Martin Erlandsson IVL Swedish Environmental Research Institute (email: martin.erlandsson@ivl.se)					
Independent third-party verifica	tion of the declaration and	data, according to ISO 14025:2006:				
EPD process certification	⊠ EPD verification					
Third party verifier:	greenzerø	Dr. Nikolay Minkov greenzero.me GmbH (https:// <u>www.greenzero.me</u>) Contact: nikolay.minkov@greenzero.me				
Approved by:	The International EPD [®] Sy	rstem				

LCA information		
Background LCA Report prepared by:	LyCIS.HMCS Group Dr. Giannopoulos Dimitrios Dr. Stamatiadou Marianna Dr. Bonou Alexandra	
	LyCIS.HMCS is s a research group of the Lab of Heterogeneous Mixtures & Combustion School of Mechanical Engineering National Technical University of Athens (Gree	
Address:	Zografou Campus 9, Iroon Polytechniou str. 15780 Zografou Greece	
Contact:	+30 210 772 1218	
Website:	www.ntua.gr/hmcs	
E-mail:	digiann@central.ntua.gr	

Company Informati	ion	
Owner of EPD:	INTERPLAST	
Contact and location of production site:	Plastics factory Industrial area of Komotini, 69100 Komotini, Greece +30 25310.38811-2 +30 25310.38700	Brass products factory Kefalovrisou 23, 13 677 st. Monopati, Acharnai, Athens, Greece +30 210.6209909-10,
	+30 25310.98720	+30 210.620 44 00
water supply, heating and of house construction, te develop and market produ	es plastic pipes and fittings to the very sewerage systems and covering a broa- echnical projects and industrial faciliti ucts and integrated solutions that cover e, by building a relationship of trust bet	v highest specifications, for use in d range of applications in the areas es. The company aims to design, the needs of modern construction
	 TUV Germany for the Quality Manage ELOT EN ISO14001:2015 and ELOT EN EVETAM Greece for the physical and r PERT, PP-H, PVC, PP-R and PP-RCT wit sizing of pipes and fittings, measuring pipes, microscopic homogenisation ch pressure at various temperatures and SKZ Germany for physical and mechar PP- H and PP-R. Moreover, sewer pipe certificate. It involves sizing of pipes a networking for PEX pipes, microscopic tests, testing under pressure at variou expansion. SKZ Germany for physical and mechar PC- H and PP-R. Moreover, sewer pipe certificate. It involves sizing of pipes a networking for PEX pipes, microscopic tests, testing under pressure at variou expansion. 	ISO50001:2018 by IQNET mechanical properties of pipes PE-X, h or without Glass fibres. It involves the degree of networking for PEX neck, impact tests, testing under checking linear expansion. nical properties of pipes PE-X, PE-RT, es PP-H feature fireproofing nd fittings, measuring the degree of chomogenisation check, impact is temperatures and checking linear
Product-related or management system- related certifications:	 AENOR Spain for physical and mechar fittings firefighter. CSA Canada for physical and mechanic the suitability for drinking water. GOST Russia for physical and mechanic 	ical properties of PPR pipes and cal properties of pipes PE-X, as for cal properties of pipes PE-X, PP-R,
	 PP-R with aluminum and brass fittings water SEPRO Ukraine the physical and mech PP-R with aluminum, PP-H and brass of ZIK Croatia the physical and mechanic R aluminum, as for the suitability for of MPA-NRW Germany for oxygen perm Como-Floor Oxygen Barrier. WRAS-NSF Great Britain for suitability water. KIWA Nederland for determination of PERT pipes. Ole ownership. liability. and respons 	anical properties of pipes PE-X, PP-R, components. al properties of pipes PE-X, PP-R, PP- drinking water. eability of Como-Pex pipes and of pipes PE, PEX and PP-R in drinking the oxygen permeability of PP-R and

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

*interplast.*____

PRODUCT INFORMATION

Product Name and Description

The INTERPLAST product declared in this EPD is the "AQUA Plus Prins" pre insulated PP-R system, which improves the AQUA Plus system (PP-R pipe), by manufacturing pre-insulated piping solutions for plumbing networks. The new system, designed for indoor, outdoor and underground installations, offers certified energy savings, durability over time, remaining unaffected by the mechanical loads, unaffected by the humidity and the sun radiation (UV). The new system exceeds the conventional insulation requirements and offers smaller linear expansion. The analyzed product system includes:

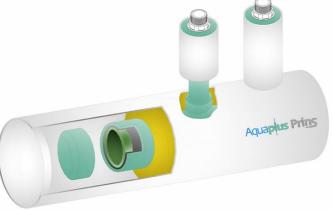
- AQUA Plus inner pipe.
- Insulation of hard closed-cell polyurethane.
- High quality U-PVC & HDPE pipe.

The strict specifications followed by INTERPLAST in the production of pipes and fittings are certified in company owned laboratories, with tests laid down by European norms EN ISO 15874, 15875, 4427, ISO 15876 and German DIN 8077, 8078, 16892, 16893, 8075, 16833, 17081 so, 16968, 1988 and 16962, Spanish UNE EN ISO and the United States ASTM standards.

Some of the proven advantages of AQUA Plus Prins include:

- Polyurethane density greater than 60 kg /m³, according to EN 253.
- No liquefaction and air trapping effects, due to universal filling of all surfaces.
- Use of high quality U-PVC & HDPE pipe, free of lead, with stabilization to sunlight (UV protection), self-extinguishing and smoke suppressant, categorized in B1 specifications.
- Lower linear expansions from copper (α =0,016 mm/m/C).
- Lower linear thermal expansion by 40% compared to PP-R reinforced with fiberglass pipe.
- Use of polyurethane as insulation (λ=0,021 W/mK), thus reducing thermal losses and increasing energy savings by 41-58% compared to an insulation with standard properties (λ=0,04 W/mK).
- No maintenance required; stable λ (lamda) over the years; long lifetime; use of waterproof material; unaffected by insects, rodents and weather conditions.

LCA INFORMATION


This EPD outlines the various environmental aspects which accompany the AQUA Plus Prins PP-R system of INTERPLAST, from the primary extraction of raw materials up to the manufacturing of the final product. Due to the scope of the LCA (cradle- to-gate), reference service life is not applicable in the study.

Declared Unit

With a cradle-to-gate system boundary and in accordance to the guiding PCR the declared unit being evaluated, is:

1m of piping system with a 25 mm inner pipe diameter

The reference flow of the declared unit is 1.24 kg per 1 m length of AQUA Plus Prins PP-R system. Please note that EPDs of construction products may not be comparable if they do not comply with the CEN TC 350 (EN15804 and EN15942) standards.

Database and LCA software used

The LCA model was created using the **SimaPro 9.3** Software system for life cycle engineering, developed by PRé Sustainability. The **EcoInvent** database (v3.8) provides the life cycle inventory data for all the raw and process materials obtained from the background system. This LCA database was compiled in November 2021, while the date of all background data used lies between 2012 and 2021.

System Boundaries

Boundary for the LCA has been set accordingly to the PCR requirements, in a **cradle-to-gate** approach, thus only Modules A1-A3 have been considered. According to the EN 15804+A1:2013 standard on the sustainability of construction works, these modules are: Raw Material Production, inbound Transport, and Manufacturing, which are categorized as A1, A2, and A3, respectively. Transport to the construction site and impacts from installation, use, and end-of-life are excluded due to lack of available data and wide variation in these phases globally. Thus, life cycle modules A4 and after are excluded from the study. The product does not contain materials or substances that can adversely affect human health and the environment in all stages of the life cycle.

m interplast.

Р	roduct	tstage	pro	truction ocess age			U	lse sta	age			En	d of lif	e stage	9	Resource recovery stage
Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Х	Х	Х	M	NA*				MNA	۱.				MN	A		MNA

(*) MNA: Module(s) Not Assessed

A1. Raw materials Production

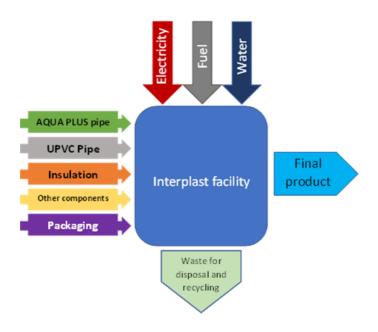
This first module includes the extraction and production of all raw materials required for the manufacturing process and the energy and resource consumption involved on those during stages upstream and the manufacturing process. Specifically, it includes the production of the materials used in the INTERPLAST-produced pipes, as well as other additives used in small quantities. It also includes all processes, electric consumption and materials needed for the other manufacturing of pipes and components at INTERPLAST facility. The module also includes raw materials supplied by external partners (such as insulation) and their manufacturing processes that take place in the relevant supply chain.

A2. Transport Transport of raw materials and externally supplied components to the production facility of INTERPLAST has been modelled under this module, taking into account the location of suppliers the and average transportation units from EcoInvent database. Transportation for raw materials takes place by road.

A3.	Mar	nufa	cturi	ing

This module includes the assembly of all components in the final AQUA Plus Prins system.

Time & Geographical coverage and Data Quality


Annual data from 2021 were collected for the pipe manufacturing facilities in Komotini, Greece, and used in the LCA calculations. Regarding the AQUA Plus pipe (the inner pipe in the system), data from the corresponding EPD will be used (see table below). Background data (mainly raw materials, chemicals and fuels) were obtained from the Ecoinvent database, while the electricity data were collected by the Hellenic Electricity Distribution Network Operator (IPTO or ADMIE) for 2021.

Inner Pipe of AQUA Plus Prins	Product declared	Declaration number	EPD owner	EPD program operator	Valid until
AquaPlus 25mm PP-R Pipe	PP-R Pipe	EPD S-P-02120	INTERPLAST S.A.	The International EPD [®] System	7/8/2025

The data represent the technology used at the pipe manufacturing plant. The INTERPLAST data used, refers to the production line of the specific product, thus there is no need for multioutput allocation estimations. In this study, site-specific data representative of the technology used in Greece in the reference year 2021 were collected and analysed. In cases when no primary data were available, either estimations provided by the company or calculated data were used.

Cut-off criteria

For the first Product Stage (Raw Materials Supply - A1) no cut off criteria are defined. Regarding Transport (A2), emissions related to transporting the plastic scrap to the recycling facility have been omitted. This impact of transporting the scrap PVC was not considered, due to its minimal contribution (less than 0.2% of the total t*km required – as calculated from tables 3-5 and 3-6). For Manufacturing (A3), all available energy and material flow data occurring at INTERPLAST facilities for the assembly of Aqua Plus Prins PPR system have been included in the model, except the insignificant consumption of the lubricants for the extrusion processes and the PP straps for packaging, since both input flows contribute less than 0.01% in terms of total mass (as seen in tables 3-4 and 3-7). All life cycle inventories have been based on Ecolnvent v3.8 and corresponding cut-off criteria reported within the database apply.

System Diagram

Content Declaration

The INTERPLAST AQUA Plus Prins PP-R system includes:

- PP-R inner pipe (INTERPLAST Aqua Plus PP-R pipe)
- Polyurethane Insulation
- External PVC & HDPE pipe
- Inner pipe supporting and centering components.

No hazardous substances or listed under ECHA's SVHC list (Substances of Very High Concern) are included in the formulation of the product. The table below shows the reference flow for the declare unit.

The following tables show the total materials, resources, components and transport inputs required to meet the declared unit of 1m of piping system, 25mm inner and 63 mm external diameter

AQUA PLUS Prins PP-R system (Ø25	internal - 63mm overall diameter) - 1m l	ength
Weight contributions (kg)		
Layers		
Inner pipe	AQUA Plus pipe 25 mm diameter	0.235 kg
Insulation	Polyurethane (PUR)	0.22 kg
External pipe	PVC pipe 63 mm diameter	0.585 kg
Inner pipe supporting components	PP-R	0.2 kg
	Total	1.24 kg

At the INTERPLAST facility, raw material is extruded for the pipes (both the inner and external), while the supporting components are also manufactured in-house. All raw materials and other components of the AQUA PLUS Prins system are transported from suppliers (A2) and delivered to INTERPLAST facility where the final product manufacturing (A3) takes place.

Plastic PVC scrap was assumed to be sold to external recyclers. Nevertheless, according to the EPD Programme guidelines, no recycling credits or burdens should be considered. The emissions of transportation of plastic scrap to the external recycler were not considered, due to its minimal transportation contribution (less than 0.2% of the total t*km required – as calculated from tables showing transportation distances). As regard the waste treatment of the excess PUR, the dataset used assumes the disposal mix for 1 kg of waste polyurethane in Greece using country-specific data.

0.3 kg
Ο3 κα
0.5 Kg
0.045 kg
0.01 kg
0.12 kg
0.05 kg
0.06 kg

Material composition of 1m PVC pipe Ø63 - the casing of AQUA Plus Prins Pipe System

Material composition of the supporting components used for 1m of Aqua plus Prins pipe Ø25

Material	
PP resin	0.2 kg

Input and output from PVC pipe manufacturing process (Ø63 external pipe) - 1m length.*Input flow "Lubricants" not

Туре	Flow	Value	Unit
Inputs	Electricity	0.32	kWh
	Natural Gas	0.0005	Nm3
	Lubricants*	0.00001	kg
	Water	0.0025	m3
Outputs	Final Product (Pipe)	0.585	kg
	Plastic Scrap for recycling (PVC)	0.05	kg

minterplast.

Transportation of PVC pipe raw materials to INTERPLAST facility

Flow	Location of production	Distance (km)	Transportation mode
PVC resin	France	2700	
Pigment	Greece	500	
EVOH (Oxygen barrier)	Germany	1800	Truck
Flame Retardant	Germany	1800	(to INTERPLAST facility – Komotini)
CaCO ₃	Greece	500	
PVC Stabilizer	Greece	500	
PP resin	Austria	1500	

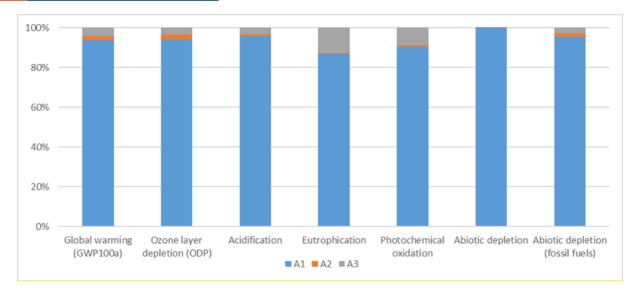
Transportation of externally supplied components from suppliers to INTERPLAST facility

Component	Location of production Distance (kn		n) Transportation mode				
Insulation	Greece	800					
Packaging – Wood pallets	Greece	10	Truck (to INTERPLAST facility – Komotini)				
Packaging – PP strap	Greece	10					

Inputs and Outputs for Aqua Plus Prins Ø25 manufacturing at INTERPLAST facility. *Input flow "Lubricants" and "PP strap" not considered in calculations.

	Strup not considered in calculations.		
Туре	Flow	Value	Unit
Inputs	Electricity	0.48	kWh
	Natural Gas	0.001	Nm ³
	Lubricants*	0.000015	kg
	AquaPlus 25mm PP-R Pipe	1	m
	PVC Pipe 63 mm	1	m
	Insulation (PUR)	0.27	kg
	Inner pipe supporting components	0.2	kg
	Water	0.004	m³
	Wood pallets	0.03125	р
	PP strap*	0.0001	kg
Outputs	Final Product (Aqua Plus Prins+ Packaging)	1.87	kg
	Waste PUR	0.05	kg

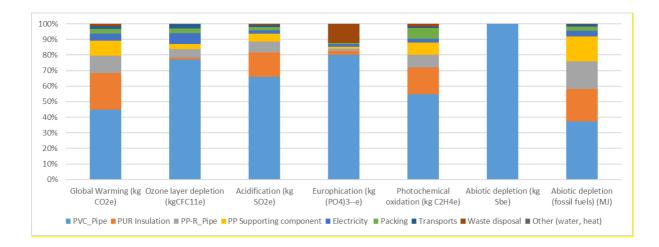
ENVIRONMENTAL PERFORMANCE


The environmental performance of the INTERPLAST AQUA PLUS Prins PP-R system will be examined for each one of the three modules mentioned before and the impact assessment categories, which are shown in the following table. The selection of impact categories conforms with the relevant PCR specifications. As also dictated by the PCR, the corresponding characterization factors used refer to the latest version of the impact assessment method adopted by EN15804+A1:2013, which is the CML-IA baseline version 3.07 (December 2021).

Impact Category	Description	EN15804+A1:2013
Global Warming (GWP100)	A measure of greenhouse gas emissions, such as CO2 and CH4	kg CO2 equivalent
Eutrophication	Eutrophication covers all potential impacts of excessively high levels of macronutrients, the most important of which nitrogen (N) and phosphorus (P).	kg (PO4) ⁻³ equivalent
Acidification for soil and water	A measure of emissions that cause acidifying effects to the environment.	kg SO ₂ equivalent
Photochemical Ozone Creation	A measure of emissions of precursors that contribute to ground level smog formation (mainly ozone O3).	kg C ₂ H ₄ equivalent
Ozone Depletion	A measure of air emissions that contribute to the depletion of the stratospheric ozone layer.	kg CFC-11 equivalent
Depletion of abiotic resources – elements	A measure of the depletion of nonliving (abiotic) resources such as minerals and metals	kg Sb equivalent
Depletion of abiotic resources – fossil fuels	A measure of the depletion of nonliving (abiotic) resources such as fossil fuels	MJ

LCA Results

The overall cradle-to-gate results are presented broadly into three categories: Raw Material, Transport, and Manufacturing. For overall results using the EN 15804+A1:2013 life cycle modules as required by the guiding PCR, refer to the declared results in the EPD. that the impact contribution of raw materials dominates the cradle-to-gate results. The production of the PVC casing, alongside with the corresponding raw material supply chains contribute most of the impact in all categories. The PUR insulation layer has an important contribution, followed by the inner PP-R pipe. Nevertheless, the inner pipe has a considerable impact share which rises in larger product sizes. If the contribution of the PP supports is added to the aforementioned components, more than 85% of the total impact is summed for all categories. The electric consumption, the wood pellets used for packing and the truck transportation show notable, however minor contributions.


Impact contribution of life cycle stages of construction products according to EN 15804+A1:2013 standard

The absolute equivalent values of impacts are summarized in the following table.

Impact Assessment results of INTERPLAST AQUA PLUS Prins (per declared unit of 1m of piping system - Ø25mm inner
pipe)

Туре	Unit	Total	Raw Material (A1)	Transport (A2)	Manufacturing (A3)
Global Warming (GWP100)	kg CO₂ eq	5.84	5.47	0.111	0.255
Eutrophication	kg (PO₄)⁻³ eq	5.34E-02	4.65E-02	7.99E-05	6.87E-03
Acidification for soil and water	kg SO₂ eq	3.63E-02	3.47E-02	3.47E-04	1.21E-03
Photochemical Ozone Creation	kg C₂H₄ eq	1.62E-03	1.46E-03	1.47E-05	1.41E-04
Ozone Depletion	kg CFC-11 eq	7.51E-07	7.06E-07	2.00E-08	2.52E-08
Depletion of abiotic resources – elements	kg Sb eq	0.136	0.136	5.10E-07	1.68E-06
Depletion of abiotic resources – fossil fuels	MJ	104	99.5	1.63	3.10

Impact contribution of flows considered for the INTERPLAST AQUA Plus Prins Ø25 (per declared unit of 1m of system)

Resource use, waste categories and output flow parameters of INTERPLAST AQUA PLUS Prins (per declared unit of 1m of piping system - Ø25mm inner pipe)

Parameter		Unit	Total	Raw Material (A1)	Transport (A2)	Manufactu- ring (A3)
Primary	Use as energy carrier	MJ, net calorific value	26.6	10.1	2.82E-02	1.54E-03
energy resources –	Used as raw materials	MJ, net calorific value	0	0	0	16.4
Renewable	TOTAL	MJ, net calorific value	26.6	10.1	2.82E-02	16.5
Primary energy	Use as energy carrier	MJ, net calorific value	125	119	1.77	3.71
resources – Non-	Used as raw materials	MJ, net calorific value	0	0	0	0
renewable	TOTAL	MJ, net calorific value	125	119	1.77	3.71
Secondar	y material	kg	0	0	0	0
Renewable se	econdary fuels	MJ, net calorific value	0	0	0	0
	ble secondary els	MJ, net calorific value	0	0	0	0
Net use of	fresh water	m ³	0.122	0.116	3.10E-04	5.72E-03
Hazardous w	aste disposed	kg	0	0	0	0
	Non hazardous waste disposed		5.00E-02	0	0	5.00E-02
Radioactive w	Radioactive waste disposed		0	0	0	0
Components for re use		kg	0	0	0	0
Materials for recycling		kg	5.00E-02	5.00E-02	0	0
Materials for energy recovery		kg	0	0	0	0
Exported energy		MJ per energy carrier	0	0	0	0

In order to facilitate the estimation of the corresponding impact of larger product sizes, two alternative system sizes were also assessed. The additional sizes examined refer to a medium (Aquaplus Prins 90mm diameter - 160mm outer diameter) and a large (Aquaplus Prins 315mm diameter - 450mm outer diameter) product size. The impact of in-between system pipe sizes may be estimated through interpolation, according to the inner pipe diameter.

Туре	Unit	Aquaplus Prins 25mm (63mm_out)	Aquaplus Prins 90mm (160mm_out)	Aquaplus Prins 315mm (450mm_out)
Global Warming (GWP100)	kg CO₂ eq	5.84	38.6	186
Eutrophication	kg (PO ₄) ⁻³ eq	5.34E-02	0.168	1.00
Acidification for soil and water	kg SO₂ eq	3.63E-02	0.195	1.01
Photochemical Ozone Creation	kg C ₂ H ₄ eq	1.62E-03	8.95E-03	4.47E-02
Ozone Depletion	kg CFC-11 eq	7.51E-07	2.58E-06	1.55E-05
Depletion of abiotic resources – elements	kg Sb eq	0.136	0.406	2.67
Depletion of abiotic resources – fossil fuels	MJ	104	713	3532

Impact Assessment results of additional INTERPLAST AQUA Plus Prins sizes (per declared unit of 1m of system)

Interpretation of LCA Results

Raw materials used in the AQUA Plus Prins components (incorporating all manufacturing and transport processes for their production) were by far the highest impact grouping in the cradle-to-gate analysis, featuring a corresponding contribution more than 85% for all impact categories. Main contributors in all impact categories were mainly the PVC casing, followed by insulation (PUR) and the contribution of the inner PP-R pipe. Transportation of components to INTERPLAST facility and electricity required for assembly related processes for the AQUA Plus Prins were of lower significance.

It was found that the impact contribution of raw materials dominates the cradle-to-gate results. The production of the PVC casing, alongside with the corresponding raw material supply chains contribute most of the impact in all categories. The PUR insulation layer has an important contribution, followed by the inner PP-R pipe. Nevertheless, the inner pipe has a considerable impact share which rises in larger product sizes. If the contribution of the PP supports is added to the aforementioned components, more than 85% of the total impact is summed for all categories. The electric consumption, the wood pellets used for packing and the truck transportation show notable, however minor contributions. Overall, the manufacturing stage provides less than 10% of the total impact, which can be further decreased if a recycling option is adopted for the waste PUR.

Two alternative system sizes were also assessed, in order to facilitate the estimation of the corresponding impact of larger product sizes. The environmental impact values for the larger sizes show an approximate linear growth, according to the increase of the inner pipe diameter.

This study identifies the main drivers of impact for INTERPLAST; significant contributors are analyzed at the cradle-to-gate level as well as at the individual material input level. This granular level of reporting will support INTERPLAST to make environmentally informed choices about the rest components that are provided by suppliers.

REFERENCES

General Programme Instructions of the International EPD® System. Version 3.01.

PCR Construction Products and Construction Services (2012:01), version 2.34

EN 15804+A1:2013: Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

EN ISO 14040: Environmental Management-Life Cycle Assessment-Principles and framework.

EN ISO 14044: Environmental Management-Life Cycle Assessment-Requirements and guidelines.

EN ISO 14025: Environmental labels and declarations-Type III Environmental Declarations Principles and procedures

JRC. (2010). ILCD Handbook: General guide for Life Cycle Assessment – Detailed guidance. EUR 24708 EN (1st ed.). Luxembourg: Joint Research Centre.

IPTO (ADMIE) S.A. (Hellenic Independent Power Transmission Operator S.A.) https://www.admie.gr/en/market-statistics/montlhy-energy-balance/

www.interplast.gr

Plastic factory

- Industrial area of Komotini,
 69100 Komotini, Greece
- +30 25310.38811-2 +30 25310.38700 +30 25310.98720
- +30 25310.38813
- +30 6974 060 002

Brass products Factory

- Kefalovrisou 23, 13 677 st. Monopati, Acharnai Athens Greece
- +30 210.6209909-10, +30 210.620 44 00
- +30 210.6250351
 +30 210.6250745
- 🖬 +30 6978 339 384

howroom - Office

- ♥ 9B El.Venizelou str. Thermi 57001 Thessaloniki, Greece
- +30 2310.024933
- +30 2310.489734

