Asphalt mixture produced in Iceland using Hólabrú aggregate

Malbikstöðin ehf.

Environmental Product Declaration - EPD Programme The International EPD® System Programme operator EPD International AB EPD registration number S-P-05204 Publication date 2022-06-13 Valid until 2027-06-12

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com.

in accordance with ISO 14025 and EN 15804+A1

CONTACT INFORMATION

EPD owner		Koparslétta 2-6, 162 Reykjavík, Iceland Email: info@malbikstodin.is
	MALBIKSTÖÐIN	www.malbikstodin.is
LCA author		Vallakór 4, 203 Kópavogur, Iceland
	Resource	Email: info@resource.is
	INTERNATIONAL	www.resource.is
Programme		Valhallavägen 81, 114 27 Stockholm,
operator	EPD	Sweden
	THE INTERNATIONAL EPD® SYSTEM	Email: info@environdec.com
		www.environdec.com
Third party verifier		prof. Ing. Vladimír Kočí, Ph.D., MBA
-	LCA studio	Email: vladimir.koci@lcastudio.cz
		www.lcastudio.cz

PROGRAMME-RELATED INFORMATION

CEN standard EN 15804 serves as the core PCR

Product group classification: UN CPC 1533 & 3794

PCR 2018:04 Asphalt mixtures, version 1.03; 2019-09-06

PCR review was conducted by The Technical Committee of the International EPD® System. Review chair: Claudia A. Peña. Contact via info@environdec.com

Independent third-party verification of the declaration and data in accordance with ISO14025:2006

⊠External □Internal

covering

 \Box EPD process certification \boxtimes EPD verification

Procedure for follow-up during EPD validity involves third party verifier \Box Yes \boxtimes No

The EPD owner has the sole ownership, liability and responsibility of the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPD of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see ISO 14025.

COMPANY INFORMATION

Malbikstöðin ehf., located in Iceland, produces asphalt for road construction with an emphasis on quality, service, and environmental considerations. Malbikstöðin is a leader in environmentally friendly production of asphalt in Iceland. New equipment enables the company to produce asphalt with up to 60% recycled asphalt. The company's environmental policy aims to further reduce carbon emissions in the production of asphalt by replacing diesel oil for methane in the production of asphalts in the coming years. The methane will be obtained from landfill gas which would otherwise be flared-off. Malbikstöðin also run their own laboratory which greatly contributes to ensuring the quality of the production and the development of products. Malbikstöðin strives to create a professional and inspiring work environment as well as maintaining a culture based on respect, ambition, and team spirit.

PRODUCT DESCRIPTION

Hólabrú 11 is a dense surface course asphalt specifically designed for its high durability and resistance to rutting. It is a combination of hard-wearing durable aggregates combined with bitumen to give enhanced stability under stress with good load bearing capacity made to the highest standards. As a surface course, Hólabrú 11 is designed to provide a safe and smooth road, meet the needs of road users and resist the elements. Hólabrú 11 is a 100% recyclable material and uses local aggregates. It is suitable for public roads with traffic levels up to 8000 vehicles per day, housing estate roads, factory and car parking areas, runways, and house fronts. 71.32% of the mass of produced material at Malbikstöðin is Hólabrú 11-based asphalt.

APPLICATION

The asphalt is intended for use on roads, runways and other infrastructure for land transport (1).

CONTENT DECLARATION

The main components in asphalt mixes are bitumen and aggregates. Other materials such as fillers and additives can be added, and their content depends on the asphalt type. Reclaimed Asphalt Pavement (RAP) is also commonly incorporated to replace virgin bitumen and virgin aggregate. The mix recipe for Hólabrú 11 can be found in Table 1.

Table 1. Product composition

Hólabrú 11
Aggregates from
Hólabrú quarry
Fillers
Bitumen
Additives

Table 2 displays a declaration of performance for the Hólabrú 11 asphalt produced by Malbikstöðin in accordance with ÍST EN 13108-1:2016. No packaging is used for the final product. The product does not contain any REACH SVHC substances in amounts greater than 0.1% (1 000 ppm).

Declared usability in accordance with IST EN 13108-1							
Name	Weight ratio that penetrates sieve	Standard	Important qualities				
Grading	SL 11						
Size of aggregates Dmax	11.2 mm						
Penetrates sieve %							
16 mm	100						
11.2 mm	90-100	ÍST EN 12697-2	2,3				
8 mm	64-84	151 EN 12097-2	2,5				
5.6 mm	52-71						
2 mm	28-48						
0.063 mm	6-10						
Other qualities							
Binder content	B _{min5.5}	ÍST EN 12697-39	1,2,3,4				
Air voids	V _{min1.5} – V _{max3.5}	ÍST EN 12697-8	1,2,3,4				
Voids filled with binder	VFB _{min75} – VFB _{max97}	ÍST EN 12697-8	3				
Temperature of mixture °C	130-165	ÍST EN 12697-13	1,2,3,4				
Penetration grade 160/220							
Temperature of mixture °C	140-180	ÍST EN 12697-13	1,2,3,4				
Penetration grade 70/100							

LCA INFORMATION

GOAL OF STUDY

This study aims to generate an environmental profile for the manufacturing of 1 000 kg of Hólabrú 11 asphalt produced by Malbikstöðin in Iceland. Type III EPD is to be generated and made public via the International EPD system®.

EPD TYPE

Product specific.

DECLARED UNIT

The declared unit of the LCA is the manufacturing of **1 000 kg (1 metric tonne)** of Hólabrú 11 asphalt. The average is based on the mass of the product produced and the reference year for this LCA is 2021.

GOAL AND SCOPE

This LCA evaluates the environmental impacts of the production of 1000 kg of Hólabrú 11 asphalt from cradle-to-gate. No modules or processes are excluded which are stated as mandatory in the standards and PCR 2018:04.

BACKGROUND DATA

Specific data from manufacturer is used in combination with the Ecoinvent v.3.8. databank and LCA databanks provided by OpenLCA. The Ecoinvent database is one of the most widely used LCA databases worldwide and it contains international industrial life cycle inventory data on energy supply, resource extraction, material supply, chemicals, metals, agriculture,

waste management services, and transport services (2,3)

PRODUCT SUSTAINABILITY SOFTWARE

OpenLCA 1.11.0.

DATA QUALITY

Energy mix and other processes are valid for the production site in Esjumelar, Iceland. Malbikstöðin provided data for one-year of operation for the year 2021. Modelling of the life cycle of Hólabrú 11 asphalt was performed using OpenLCA software developed by GreenDelta. All relevant background life cycle inventory (LCI) datasets were gathered from Ecoinvent v.3.8. and other open databanks. The data quality for the entire study can be judged as good (measured directly at a specific process site or scaled from measurements).

TIME REPRESENTIVENESS

All primary data used in this study are for the year 2021 and are thought to represent the manufacturing process for at least the next five years.

GEOGRAPHICAL SCOPE

Europe.

ALLOCATIONS

Energy and emissions were subdivided between the different products of Malbikstöðin based on mass because Malbikstöðin only had energy and emissions data for the whole plant. Diesel use needed to heat and dry the aggregates was distributed evenly between aggregate sizes as there is not a vast difference in the wetness of the aggregates for different products.

COMPARABILITY

EPDs within the same product category but from different programmes may not be comparable. EPD of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see ISO 14025.

CUT-OFF RULES

All raw materials and consumable item inputs, associated internal transports and external transports, as well as process energy use, are included in the LCA study. It is considered that the total potential neglected input flows are much less than 0.1% of total energy, area, area-time activities and mass.

SYSTEM BOUNDARY

Product environmental performance was assessed using Life Cycle Assessment (LCA), from the extraction of raw materials to the gate of the asphalt plant. The declared unit is one metric tonne of manufactured asphalt mixture. The reference flow in the LCA is defined at the gate of the asphalt mixing plant. The study was conducted in compliance with the ISO 14040 standard, EN 15804+A1 and the product category rules set forth in PCR 2018:04 Asphalt mixtures, approved by the International EPD® System technical committee. The scope of this study is "Cradle to gate" covering stages A1 – A3 in the PCR and standards (Table 3).

Proc	luct s	tage		ruction s stage	Use stage End of life stage					Resource recovery stage						
Raw materials	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-Recovery - recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Χ	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Table 3. Diagram illustrating life cycle stages studied for this EPD. (MND: module not declared).

Hólabrú 11 Asphalt EPD Environmental Product Declaration

PRODUCTION PROCESS

The main steps of the production of Hólabrú 11 by Malbikstöðin is illustrated in . The aggregates used for the asphalt are mined in Hólabrú quarry in Hvalfjörður, Iceland. All raw materials are transported to Malbikstöðin site via trucks mostly and in some cases by ship. The different materials for the asphalt are unloaded at Malbikstöðin's factory at Esjumelar. The aggregates are stored in specially marked slots and then they are internally transported by a diesel-powered wheel loader to funnels according to their grain size. From there the aggregates are transported via a conveyor belt to the rotary drum dryer where they get dried and heated. After drying they are sieved so that filler and other unwanted material falls out. The filler is not reused in any way and is considered waste from the production. After sieving the RAP is mixed with the aggregates and the bitumen as well by mixing and heating for about 45 seconds. Once the asphalt has been mixed the mixture is transported to a holding tank which keeps the asphalt under optimal temperature until it is weighed onto asphalt trucks.

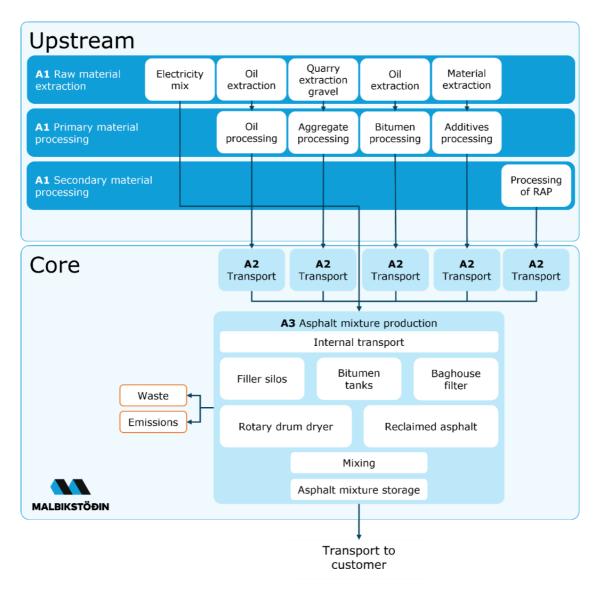


Figure 1. System diagram for the LCA assessment of Hólabrú 11. Downstream processes are outside the system boundary.

LCA: RESULTS

The environmental impacts are declared according to PCR 2018:04, parameters and units. The environmental impact results refer to 1000 kg of produced Hólabrú 11 asphalt by Malbikstöðin in Iceland. The Life Cycle Impact Assessment (LCIA) results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. Table 4 and Table 5 show the LCIA results for the production of 1000 kg of Hólabrú 11 asphalt by Malbikstöðin. The production of 1 000 kg of Hólabrú 11 asphalt by Malbikstöðin from cradle-to-gate generates 60.9 kg CO₂ eq.. Potential depletion of fossil resources and global warming potential are the most critical impacts of the life cycle for Hólabrú 11. About half of the total global warming potential for Hólabrú 11 stems from the production line of Malbikstöðin.

Malbikstöðin plans to use compressed biomethane gas (commonly referred to as "metangas" or "metan eldsneyti" in Icelandic) produced at a nearby landfill as an energy source and to substitute aggregates from mines with RAP in ever greater proportions. The results indicate that the planned changes in Malbikstöðin's production target the most significant environmental impacts and processes in the life cycle of the Hólabrú 11 asphalt.

Parameter		Unit	A1	A2	A3	TOTAL
Global warming	Fossil	kg CO ₂ eq.	22.0	1.60	36.3	59.9
	Biogenic	kg CO ₂ eq.	3.98E-02	5.82E-03	6.40E-02	0.110
potential (GWP)	Land use / land transformation	kg CO2 eq.	0.157	3.31E-02	0.682	0.872
	TOTAL	kg CO ₂ eq.	22.3	1.64	37.0	60.9
Acidification potential (AP)		kg SO ₂ eq.	2.31E-04	8.17E-03	0.130	0.138
Eutrophication potential (EP)		kg PO4 ³⁻ eq.	0.0790	0.00154	0.0113	0.0918
Formation potential of tropospheric ozone (POCP)		kg C_2H_4 eq.	4.31E-04	0.0102	0.0510	0.0616
Abiotic depletion potential – Elements		kg Sb eq.	1.70E-03	5.12E-07	9.43E-06	1.71E-03
Abiotic depletion potential – Fossil resources		MJ, net calorific value	525	22.2	449	996
Ozone layer depletion		kg CFC-11 eq.	3.83E-08	3.73E-7	7.61E-6	8.02E-6

Table 4. Potential environmental impact generated by the production of 1 000 kg of asphalt by Malbikstöðin.

Parameter		Unit	A1	A2	A3	Total				
Parameters describing resource use, primary energy										
Primary energy	Used as energy	MJ, net calorific value	21.2	8.95E-01	190	212				
resources -	Used as raw materials	MJ, net calorific value	0	0	0	0				
renewables	Total	MJ, net calorific value	21.2	8.95E-01	190	212				
Primary energy	Used as energy	MJ, net calorific value	525	22.2	449	996				
resources - non-	Used as raw materials	MJ, net calorific value	8.10E-02	1.44E-02	2.71E-01	3.67E-01				
renewables	Total	MJ, net calorific value	525	22.2	449	996				
Parameters dese	Parameters describing resource use, secondary materials and fuels, use of water									
Secondary materia	Secondary material		0	0	197	197				
Renewable seconda	Renewable secondary fuels		0	0	0	0				
Non-renewable secondary fuels		MJ, net calorific value	0	0	0	0				
Net use of fresh wa	Net use of fresh water		5.62E-02	1.17E-03	2.79E-02	8.52E-02				
Other environm	ental information des	cribing waste categor	ies							
Hazardous waste d	Hazardous waste disposed		0	0	0	0				
Non-hazardous was	ste disposed	kg	0	0	0	0				
Radioactive waste	Radioactive waste disposed		0 0		0	0				
Other environme	Other environmental information describing outflows									
Components for reuse		kg	0	0	0	0				
Materials for recycling		kg	0	0	0	0				
Materials for energy recovery		kg	0	0	0	0				
Exported energy, e	lectricity	MJ	0	0	0	0				
Exported energy, thermal		MJ	0	0	0	0				

Table 5. Parameters describing resource use, primary energy for the production of 1 000 kg of Hólabrú 11 asphalt by Malbikstöðin.

REFERENCES

1. Gæði og Öryggi. Malbiksstöðin. Online. 2022. Available from: https://malbikstodin.is/gaedavottun/

2. MALBIKSTÖÐIN. Yfirlýsing um nothæfi - Declaration of Performance - Slitlagsmalbik - SL, ÁDU 8000. Online. 7 June 2021. Malbikstöðin. [Accessed 8 February 2022]. Available from: https://malbikstodin.is/wpcontent/uploads/2021/06/yfirlyst-nothaefi-DoP-ADU-8000.pdf

3. Version 4.0: General Programme Instructions for the International EPD® System. 2021.

4. EUROPEAN COMMISSION - JOINT RESEARCH CENTRE - INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY. International Reference Life Cycle Data System (ILCD) Handbook: Framework and requirements for Life Cycle Impact Assessment models and indicators. Online. Luxembourg: Publications Office of the European Union, 2010. Available from: https://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-LCIA-Framework-Requirements-ONLINE-March-2010-ISBN-fin-v1.0-EN.pdf

5. INTERNATION ORGANIZATION FOR STANDARDIZATION. ISO 14025:2010 - Environmental labels and declarations - Type III environmental declarations - Principles and procedures. [no date].

6. OpenLCA. Online. Greendelta, 2021. Available from: www.openlca.org

7. EUROPEAN COMMISSION. JOINT RESEARCH CENTRE. INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY. International Reference Life Cycle Data System (ILCD) Handbook : general guide for life cycle assessment : detailed guidance. Online. Luxembourg : Publications Office, 2010. [Accessed 10 December 2021]. Available from: https://data.europa.eu/doi/10.2788/38479

8. Ecoinvent. OpenLCA Nexus. Online. 2022. Available from: https://nexus.openlca.org/database/ecoinvent

9. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 14040:2006 - Environmental management - Life Cycle Assessment - Principles and framework. Geneva : International Organization for Standardization, 2006.

10. CIROTH, Andreas, BARREIROS, Thaís and JÜRGENS, Meret. ecoinvent v.3.8 in openLCA. 30 November 2021.

11. HAUSCHILD, Michael Z., ROSENBAUM, Ralph K. and OLSEN, Stig Irving (eds.). Life Cycle Assessment. Online. Cham : Springer International Publishing, 2018. [Accessed 13 December 2021]. ISBN 978-3-319-56474-6.

12. ERLA MARÍA HAUKSDÓTTIR and MARGRÉT I. KJARTANSDÓTTIR. NMÍ 18-02: Steinefnabanki Vegagerðarinnar 2018 Online. Reykjavík : Nýsköpunarmiðstöð Íslands, 2018. [Accessed 14 February 2022]. Available from:

http://www.vegagerdin.is/vefur2.nsf/Files/steinefnabanki_2017/\$file/Steinefnabanki%20Vg%20mars%20201 8.pdf

13. ORKUSTOFNUN HF. Uppruni raforku. Online. 2020. Available from: https://assets.ctfassets.net/zxewc2lrmlbi/1tUQE13SzDxCkkORrQWQUu/4d88327af16716e437840e70eba1422 d/OS_-_Se__rt__k_yfirly__sing_-_2021_Orkusalan.pdf

14. SIGRÍÐUR ÓLAFSDÓTTIR. Afstöðumynd [Koparslétta 6]. Online. 2 December 2019. Reykjavíkurborg. Available from: https://teikningar.reykjavik.is/

15. INTERNATION ORGANIZATION FOR STANDARDIZATION. ISO 14044:2006 - Environmental management - Life Cycle Assessment - Requirements and guidelines. 2006.

16. LEVIN, Per. Brukarindata för energiberäkningar i kontor : vägledning Online. Stockholm : Sveby, 2010. [Accessed 7 April 2022]. Available from: https://www.sveby.org/wp-content/uploads/2011/06/Brukarindata-Kontor.pdf

17. INTERNATION ORGANIZATION FOR STANDARDIZATION. ISO 14020:2000 - Environmental labels and declarations - General principles. [no date].

18. PCR 2018:04 ASPHALT MIXTURES. ASPHALT MIXTURES. P. 33.

19.DAVIES WALDRON, Christina and MAURICE, Lourdes Q. Chapter 3: Mobile Combustion. In : 2006 IPCCGuidelines for National Greenhouse Gas Inventories. Online. Intergovernmental Panel on Climate Change, 2006.[Accessed20April2022].Availablefrom:https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf

20. RESOURCE INTERNATIONAL. Pumice and scoria: Environmental product declaration. Online. 26 October 2021. Jarðefnaiðnaðurinn. Available from: https://environdec.com/library/epd4773

21. Reglugerð um gæði eldsneytis. Online. 2016. 960. [Accessed 12 April 2022]. Available from: https://www.reglugerd.is/reglugerdir/eftir-raduneytum/umhverfis--og-audlindaraduneyti/nr/0960-2016

22. Lög um endurnýjanlegt eldsneyti í samgöngum á landi. Online. 2013. 40. [Accessed 12 April 2022]. Available from: https://www.althingi.is/lagas/152a/2013040.html

23. THE RIGHT ENVIRONMENT. Environmental Product Declaration: Warm Mix Asphalt Additive, Warm Mix Asphalt Chemical Additive, Warm Mix Asphalt Chemical Package: Evotherm M1. Online. 22 September 2021. Ingevity. Available from: https://www.ingevity.com/featured-products/evotherm/

24. ONOJA, Andrew and ALHASSAN, Hashim. The Effect of Evotherm on Hot Mix Asphalt. Engineering. 1 January 2019. Vol. 11, p. 557–575. DOI 10.4236/eng.2019.119039.

25. Produktübersicht. Online. September 2020. TotalEnergies Bitumen Deutschland. Available from: https://services.totalenergies.de/system/files/atoms/files/produktuebersicht_092020_0.pdf

26. MÅRTENSSON, Lars and VOLVO TRUCK CORPORATION. Emissions from Volvo's trucks. Online. 9 March 2018. Volvo. Available from: https://www.volvotrucks.com/content/dam/volvo-trucks/markets/global/our-values/environmental-care/our-trucks/Emis_eng_10110_14001.pdf

27. DEMIR, Usame, KOZAN, Avni and ÖZER, Salih. Experimental investigation of the effect of urea addition to fuel on engine performance and emissions in diesel engines. Fuel. 1 March 2022. Vol. 311, p. 122578. DOI 10.1016/j.fuel.2021.122578.

28. ANDERSEN, Otto, UPHAM, Paul and AALL, Carlo. Technological Response Options after the VW Diesel Scandal: Implications for Engine CO2 Emissions. Sustainability. July 2018. Vol. 10, no. 7, p. 2313. DOI 10.3390/su10072313.

29. DOOSAN. DL220-5 / DL250-5: Wheel Loaders. Online. 2019. Doosan. Available from: https://eu.doosanequipment.com/media/download/1276

30. AÐALSTEINN ATLI GUÐMUNDSSON. Malbikstöðin útblástursmælingar. Reykjavík : Malbikstöðin, 2021.

31. MALBIKSTÖÐIN. Grænt bókhald 2020 Online. Grænt bókhald. Reykjavík : Malbikstöðin, 2021. [Accessed 5 January 2022]. Available from: https://ust.is/library/sida/atvinnulif/starfsleyfi-ogeftirlitsskyrslur/2020%20Gr%C3%A6nt%20B%C3%B3khald%20-%20Malbikst%C3%B6%C3%B0in%20%C3%BAtg%207%20-

%20me%C3%B0%20%C3%A1ritun%20(ID%20233067).pdf

