
ZENITH

Environmental Product Declaration

In accordance with ISO 14025 for:

Orbis Workstation (O2CJ)

Environmental Product Declaration (EPD)

in accordance with ISO 14025 EPD Registration No. S-P-04647 | Version 1.0 Issued 14/10/2021 | Valid until 14/10/2026

Company Information

Zenith Interiors designs, manufactures, and distributes leading-edge products for corporate and commercial environments that inspire people and organisations to excel (Zenith Interiors, 2019).

Product-related or management system-related certifications:

ISO 9001 - Quality management systems

ISO 14001 - Environmental Management Systems

AS 4801 Health and Safety

Name and location of production site: Zenith Interiors, Melbourne, Victoria.

Orbis workstation (O2CJ)

The Orbis workstation supports individual, shared, focus and collaborative work modes and can easily be transformed and customised to meet the client's individual requirement. The range of sizes, shapes and finishes provides the end user with greater freedom, flexibility, and choice in the way they work both individually and as a team.

<u>UN CPC code:</u> 3812/3813/3814 (EPD International, 2019).

Geographical scope: Final product produced in Melbourne, Victoria for the Australian market.

LCA Information

<u>Functional unit / declared unit:</u> 1 O2CJ workstation with four variations in the product; tabletop dimensions: 1.8 m * 0.8 m * 0.025 m; adjustable leg height: 0.62 m to 1.23 m (sit to stand).

Scope: Cradle to grave life cycle of one Orbis workstation

Reference service life: 15 years (EPD International, 2019)

<u>Databases and LCA software used:</u> AusLCI 2.2, ecoinvent 3.6, Industry Data 2.0 databases; SimaPro 9.1.0.11 software

Data collection period: July 2019 - February 2020

An Environmental Product Declaration, or EPD, is a standardised and verified way of quantifying the environmental impacts of a product that is based on a consistent set of rules known as Product Category Rules (PCR). EPDs within the same product category from different programs may not be comparable. This EPD is for a specific furniture product and follows the Product Category Rules 'Furniture, except seats and mattresses v2.01'. The EPD owner has the sole ownership, liability, and responsibility for the EPD.

Declaration Owner:

Zenith Interiors

Web: zenithinteriors.com

Email: info@zenithinteriors.com

Phone: 1300 013 013

ZENITH

EPD produced by:

Good Environmental Choice Australia (GECA)

Web: geca.eco

Email: enquiries@geca.org.au

Phone: 02 9699 2850

EPD program operator:

EPD Australasia Limited

Web: www.epd-australasia.com

Email: info@epd-australasia.com

Post: 315a Hardy Street, Nelson, New Zealand 7010

PCR Information

PCR:

Product Category Rules 'Furniture, except seats and mattressesv2.01'.

The International EPD System

THE INTERNATIONAL EPD® SYSTEM

Independent third-party verification

Independant verification of the declaration and data, according to ISO 14025:

□EPD process certification (Internal)

☑ EPD verification (External)

Third party verifier

Jonas Bengtsson and Joana Almeida

Edge Environment

Product Information

The Orbis workstation consists of three parts: a 25 mm tabletop, electric adjust legs and a beam which connects the legs and the tabletop. The legs have a height range of 610 to 900 mm (sit to sit) and 620 to 1230 mm (sit to stand). The worktops are made of particle board or medium density fibreboard, while the legs come with or without an alloyed steel bracket. All four options are analysed in this EPD: particle board / medium density fibreboard; with / without bracket.

Background Data

Australian inputs were primarily modelled with the AusLCI database; the ecoinvent v3 database was used where suppliers were from overseas. All background data used was less than ten years old.

System Boundaries and Life Cycle Stages

Life Cycle Stages

This Environmental Product Declaration analyses the production of an Orbis workstation, including the raw material extraction, the manufacture of components from suppliers, the assembly of the workstation as well as the end of its service life. The different Orbis components are transported to Sandringham, Victoria where metal components are being powder coated and the workstation is assembled. The product is then packed in cardboard boxes and supplied to showrooms as well as clients in Australia.

'Electricity use is required for the adjustable legs. Product testing quantifies a performance life of 15 years. Maintenance of the product involves cleaning and dusting.'

Table 1: Life cycle stages of Orbis workstation

Process	Module	Description	Life cycle stages	Declared modules
Upstream	Al	Raw materials supply	A1-A3: Manufacturing stage	Х
process	A2	Components/raw materials manufacture		X
Core process	A3	Components transport to Zenith factory		Х
	Α4	Manufacturing of final products		Х
Downstream	B1	Transport of final product	B1: Final product transport	Х
process	B2	Maintenance	B2-B4: Usage stage	Х
	В3	Replacement		Х
	B4	Operational energy use		Х
	C1	Transport	C1-C3: End-of-life	Х
	C2	Manual dismantling		Х
	C3	Waste disposal		Х
Other Environment al Stage	D	Recycling	Other Environmental Stage	X

System Diagram

An 'upstream – core – downstream' flow is adopted in this study. The upstream processes include the flows of raw materials. The core processes include all activities which the manufacturing organisation is in control of, i.e. transportation of the components to the manufacturing factory and the actual process of manufacturing. The downstream processes include the steps that are controlled by the user and the disposal or recycling options of the products.

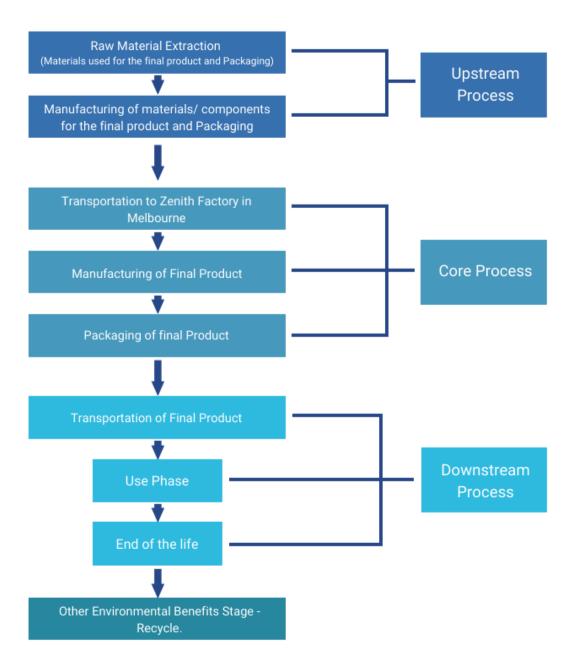


Figure 1: Process diagram Orbis workstation

End-of-life Scenarios

Zenith Interiors operates a take-back scheme for its furniture. Likewise, furniture owners resell or donate the furniture by themselves to extend its lifetime. In the end-of life for other environmental stages (represented as modules D), all aluminium and steel parts of the product are recycled after being manually dismantled. This is noted separately due to Polluter pays principle (PPP).

Data Quality, Temporal Scope and Geographical Scope

The modelling of Zenith products is of high quality as detailed company specific data about the product components, component suppliers, the annual energy consumption and the annual production rate was provided for this study. Data for upstream and downstream processes are retrieved from suitable averages in the AusLCI and ecoinvent databases.

The temporal scope of the study is the period for which the data was collected. The data collection process started with the visit to Zenith's Melbourne factory in July 2019. The energy consumption data taken into consideration range from September 2018 to 2019. The production volume data is for 2019. For the background data, temporal scope for AUSLCI VI.33, a shadow database of modified ecoinvent 2.2 processes is July 2020. For ecoinvent 3.6 the temporal scope is September 2019.

Table 2: Data sources, geographical scope and data quality

Materials/fuels		Module	Data source	Geographic	Data
				al scope	quality
Raw	Components for beam	A1, A2	Information	China	High
materials	Components for legs		provided by Zenith	China	quality
supply,	Particle board/ Medium		Interiors	Australia	
components/	Density Fibreboard for tabletop				
raw materials	Packaging of final product				
manufacture,	Packaging from suppliers				
packaging					
Components	Transportation of steel/	A3, A4	Information	Australia	High
transport to	aluminium components for		provided by Zenith		quality
Zenith factory,	beam (Shanghai, China and		Interiors		
manufacturin	Victoria, Australia)				
g of final	Transportation of components				
products	for legs (Shanghai, China)				
	Transportation of Medium				
	Density fibreboard/particle				
	board for tabletop (Victoria,				
	Australia)				
	Electricity consumption				
	Natural gas consumption				
Transportatio	Zenith Melbourne factory to	B1	Assumption of	Australia	Medium
n of final	client		average distance		quality
product			of 1,000 km		
			according to		
			Product Category		
			Rules		
Usage stage	Maintenance	B2	Regular cleaning	Australia	Medium
			and dusting and		quality
			motor replacement		
		_	are recommended.		
Replacement		B3	Motor life span: 5		
		_	years		
	Operational energy use	B4	Electricity to		
			operate adjustable		
			leg motor and		

			stand-by energy		
			are considered.		
End-of-life	Transport	C1	Assumption of	Australia	Medium
without			average distance		quality
recycling			of 1,000 km		
	Manual dismantling	C2	No impacts		
			observed for		
			manual		
			dismantling		
	Waste disposal	C3	Complete product		
			along with		
			packaging ends up		
			in landfill.		
Other Life	Recycling	D	100% of aluminium	Australia	Medium
Cycle stages			and steel parts are		quality
			recycled.		

Allocations

No allocation between co-products in the core module was necessary as there were no co-products created during manufacturing.

The methodological choices for allocation for reuse, recycling and recovery have been set according to the polluter pays principle (PPP). This means that the generator of the waste shall carry the full environmental impact until the point in the product's life cycle at which the waste is transported to a scrapyard or the gate of a waste processing plant (collection site). The subsequent user of the waste shall carry the environmental impact from the processing and refinement of the waste, but not the environmental impact caused in the earlier life cycles. The cut-off system model from ecoinvent was used. Any allocations in the AusLCI unit system and Industry Data 2.0 were adopted.

Content Declaration

Table 3: Materials used for Orbis workstation

Materials	Quantity	Unit
Medium Density Fibreboard / particle board	0.036	m³
Steel alloyed type 1	10.8/11.018	kg
Steel alloyed type 2	0.032	kg
Steel alloyed type 3	2.25	kg
Steel alloyed type 4	0.014	kg
Acrylonitrile butadiene styrene	0.163	kg
Polyoxymethylene/duracon	0.0464	kg
Motor for electric leg height adjustment	0.01	Kg
Unalloyed steel in the legs	3.768	kg
Aluminium extruded	2.23	kg
Aluminium die cast	9.641	kg
Unalloyed steel sheet	28.321	kg
Unalloyed steel in the beam	0.008	kg
Packaging materials from suppliers – plastic film	0.082707	kg
Packaging materials from suppliers – cardboard box	0.33	kg
Packaging for final product – cardboard box	0.33	kg
Energy during manufacturing – electricity	6.1	kWh
Energy during manufacturing – gas	48.5	MJ

Environmental Performance

Environmental Impact Assessment Methods

Table 4: Overview of environmental impact assessment methods used in the study

Impact cat	egory	Unit	Assessment method
Global	Fossil	kg CO₂eq.	Greenhouse Gas Protocol V1.02
warming potential	Biogenic	kg CO₂eq.	
(GWP)	CO2 eq. from land transformatio n	kg CO₂eq.	
	Total	kg CO₂eq.	
Abiotic dep	letion	kg Sb eq.	CML-IA baseline V3.6
Abiotic dep	letion (fossil	MJ	
Ozone laye (ODP)	r depletion	kg CFC-11 eq.	
Photochem	ical oxidation	kg C ₂ H ₄ eq.	Recipe 2008 Midpoint
Acidificatio	n	kg SO ₂ eq.	CML-IA baseline V3.6
Eutrophicat	ion	kg PO₄³⁻ eq.	
Water use		m³	AWARE VI.01
Land use	Land use		Recipe 2016 Endpoint V1.04
Human toxi	city, cancer	CTUh	USEtox 2
Human toxi cancer	city, non-	CTUh	
Freshwater	ecotoxicity	CTUe	
Radioactive	e waste	kg	EDIP 2003 method
Hazardous	waste	kg	EDIP 2003 method
Non-hazard	dous waste	kg	EDIP 2003 method (Sum of Bulk waste and Slag waste)
Primary energy resources	Use as energy carrier	MJ	Cumulative Energy Demand V1.11 method: calculated as sum of renewable – biomass, renewable – wind, solar, geothermal, and renewable – water.
Renewabl e	Use as raw materials	MJ	Manual calculation
Primary energy resources	Use as energy carrier	MJ	Cumulative Energy Demand V1.11 method: calculated as sum of non-renewable – fossil, non-renewable – nuclear, and non-renewable – biomass.
Non- renewabl e	Use as raw materials	MJ	Manual calculation
Secondary resources	material	kg	Manual calculation
Renewable	secondary fuels	MJ	0

Non-renewable secondary fuels	MJ	0
Net use of fresh water	m³	Recipe 2016 Midpoint V1.04

The following tables show the environmental impacts of the Orbis workstation with respect to upstream, core and downstream processes, including all processes listed in Table 1. The downstream processes are divided into the two end-of-life scenarios described in chapter 0.

Life Cycle Impacts

O2CJ-Particle board tabletop and legs with bracket

Table 5: Life cycle impacts – O2CJ (particle board top and legs with bracket)

Impact cate	gory	Unit	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environme
					with landfill		ntal stage-
							Recycling
			A1-A2	A3-A4	B1-C4		D
Global	Fossil	kg CO ₂	4.95E+02	4.10E+01	1.28E+02	6.63E+02	-2.83E+02
warming		eq.					
potential	Biogenic	kg CO ₂	-3.73E+01	2.07E-02	9.56E+01	5.83E+01	-2.53E-01
(GWP)		eq.					
	CO₂ eq. from	kg CO ₂	8.01E-01	7.54E-05	4.21E-04	8.01E-01	-1.05E-03
	land	eq.					
	transformation						
	Total	kg CO ₂	4.58E+02	4.11E+01	2.23E+02	7.22E+02	-2.83E+02
		eq.					
Abiotic depl	etion	kg Sb	1.14E-02	2.32E-05	1.02E-04	1.16E-02	-7.87E-05
		eq.					
Abiotic depl	etion (fossil	MJ	4.86E+03	3.91E+02	1.69E+03	6.94E+03	-1.67E+03
fuels)							
Ozone layer	depletion (ODP)	kg	1.82E-05	2.80E-06	1.87E-05	3.97E-05	-6.12E-06
		CFC-11					
		eq.					
Photochemi	cal oxidation	kg	1.57E+00	3.65E-01	2.76E+00	4.69E+00	-8.66E-01
		NMVOC					
Acidification	1	kg SO ₂	2.11E+00	2.05E-01	5.91E-01	2.91E+00	-7.02E-01
		eq.					
Eutrophicati	on	kg	7.28E-01	4.86E-02	1.31E-01	9.08E-01	-1.23E-01
		PO ₄ ³⁻					
		eq. m³	1.71E+03	3.13E+02	3.09E+02	2.33E+03	-5.72E+03

Table 6: Resource use - O2CJ (particle board top and legs with bracket)

Table 6. Resource ase 6200 (partiele beard top and legs with brackety						
Impact cate	gory	Unit	Upstream	Core	Downstream	Total	Other	
			processes	processes	processes		environment	
					with landfill		al stage-	
							Recycling	
			A1-A2	A3-A4	B1-C4		D	
Primary	Use as energy	MJ	1.00E+03	9.36E+00	5.41E+00	1.02E+03	-1.47E+02	
energy	carrier							
resources	Use as raw	MJ	0	0	0	0	0	
Renewabl	materials							
е	Total	MJ	1.00E+03	9.36E+00	5.41E+00	1.02E+03	-1.47E+02	
Primary	Use as energy	MJ	5.45E+03	4.20E+02	1.80E+03	7.67E+03	-1.77E+03	
energy	carrier							
resources	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0	
Non-	materials							
renewable	Total	MJ	5.45E+03	4.20E+02	1.80E+03	7.67E+03	-1.77E+03	
Secondary n	naterial	kg	0	0	0	0	0	
resources	resources							
Renewable secondary fuels		MJ	0	0	0	0	0	
Non-renewable secondary		MJ	0	0	0	0	0	
fuels								
Net use of fre	esh water	m³	4.07E+01	7.28E+00	7.19E+00	5.52E+01	-1.33E+02	

Table 7: Other impacts – O2CJ (particle board top and legs with bracket)

'	`'	le board top		· · · · · · · · · · · · · · · · · · ·		_
Impact category	Unit	Upstream	Core	Downstrea	Total	Other
		processes	processes	m		environmental
				processes		stage-Recycling
				with landfill		
		A1-A2	A3-A4	B1-C4		D
Land use	specie	1.51E-07	1.36E-08	1.10E-08	1.76E-07	-7.03E-08
	s.yr					
Human toxicity, cancer	CTUh	9.29E-08	1.09E-09	3.46E-09	9.75E-08	-2.31E-08
Human toxicity, non-	CTUh	1.60E-08	1.92E-10	1.81E-09	1.80E-08	-8.25E-09
cancer						
Freshwater ecotoxicity	CTUe	6.35E-01	4.84E-02	1.68E-01	8.51E-01	-1.92E-01

Table 8: Waste flow categories – O2CJ (particle board top and legs with bracket)

Table 6. Waste now categories — 0203 (particle board top and legs with bracket)							
Impact category	Unit	Upstream	Core	Downstream	Total	Other	
		processes	processes	processes		environment	
				with landfill		al stage-	
						Recycling	
		A1-A2	A3-A4	B1-C4		D	
Radioactive waste	kg	8.58E-03	6.32E-06	2.66E-06	8.59E-03	-1.45E-05	
Hazardous waste	kg	9.62E-03	4.32E-04	7.37E-04	1.08E-02	1.38E-03	
Non-hazardous waste	kg	7.89E+01	1.22E+00	5.50E+01	1.35E+02	-2.97E+01	

Table 9: Output flow categories - O2CJ (particle board top and legs with bracket)

		VI.	1 0			
Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

Medium density fibreboard tabletop and legs with bracket

Table 10 Life cycle impacts – O2CJ (MDF top and legs with bracket)

Impact cat	egory	Unit	Upstream	Core	Downstream	Total	Other
'	0 ,		processes	processes	processes		environme
			'	'	with landfill		ntal stage-
							Recycling
			A1-A2	A3-A4	B1-C4	-	D
Global	Fossil	kg CO ₂	5.06E+02	4.10E+01	1.29E+02	6.76E+02	-2.83E+02
warming		eq.					
potential	Biogenic	kg CO ₂	-4.62E+01	5.28E+01	5.28E+01	5.95E+01	-2.53E-01
(GWP)		eq.					
	CO ₂ eq. from	kg CO ₂	8.01E-01	7.54E-05	4.25E-04	8.01E-01	-1.05E-03
	land	eq.					
	transformation						
	Total	kg CO ₂	4.60E+02	4.11E+01	2.23E+02	7.24E+02	-2.83E+02
		eq.					
Abiotic dep	letion	kg Sb	1.14E-02	2.32E-05	1.03E-04	1.16E-02	-7.87E-05
		eq.					
	oletion (fossil	MJ	4.96E+03	3.91E+02	1.71E+03	7.06E+03	-1.67E+03
fuels)							
Ozone laye	r depletion (ODP)	kg	1.81E-05	2.80E-06	1.89E-05	3.98E-05	-6.12E-06
		CFC-11					
Di t i	to all and all all an	eq.	1005.00	0.055.01	0.705 : 00	4.755 . 00	0.055.01
Photochem	nical oxidation	kg	1.60E+00	3.65E-01	2.78E+00	4.75E+00	-8.65E-01
A = : =1:4: = =:4: =		NMVOC	0.105 + 0.0	0.055.01	F 07F 01	0.005+00	7.005.01
Acidification		kg SO ₂	2.13E+00	2.05E-01	5.97E-01	2.93E+00	-7.02E-01
Eutrophication		eq.	7.35E-01	4.86E-02	1.33E-01	9.16E-01	-1.23E-01
Eutrophical	uon	kg PO ₄ 3-	7.30E-UI	4.006-02	I.SSE-UI	J.10E → U1	-1.23E-01
		eq.					
Water use		m ³	1.98E+03	3.13E+02	3.11E+02	2.61E+03	-5.72E+03
water use		1 '''	1	0.101.02	0.112.02	2.51L · 00	J 3.72L . 00

Table 11 Resource use - O2CJ (MDF top and legs with bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		

							al stage-
							Recycling
			A1-A2	A3-A4	B1-C4		D
Primary	Use as	MJ	1.17E+03	9.36E+00	5.41E+00	1.19E+03	-1.47E+02
energy	energy						
resources	carrier						
Renewable	Use as raw	MJ	0	0	0	0	0
	materials						
	Total	MJ	1.17E+03	9.36E+00	5.41E+00	1.19E+03	-1.47E+02
Primary	Use as	MJ	5.60E+03	4.20E+02	1.82E+03	7.80E+03	-1.77E+03
energy	energy						
resources	carrier						
Non-	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0
renewable	materials						
	Total	MJ	5.60E+03	4.20E+02	1.82E+03	7.80E+03	-1.77E+03
Secondary mo	aterial	kg	0	0	0	0	0
resources							
Renewable secondary fuels		MJ	0	0	0	0	0
Non-renewable secondary		MJ	0	0	0	0	0
fuels							
Net use of fres	sh water	m³	4.71E+01	7.28E+00	7.21E+00	6.16E+01	-1.33E+02

Table 12 Other impacts – O2CJ (MDF top and legs with bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processe	processes	processes		environment
		s		with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Land use	species.	1.68E-07	1.36E-08	1.11E-08	1.93E-07	-7.03E-08
	yr					
Human toxicity, cancer	CTUh	9.51E-08	1.09E-09	3.50E-09	9.97E-08	-2.31E-08
Human toxicity, non-	CTUh	1.62E-08	1.92E-10	1.83E-09	1.82E-08	-8.25E-09
cancer						
Freshwater ecotoxicity	CTUe	6.18E-01	4.84E-02	1.70E-01	8.36E-01	-1.92E-01

Table 13 Waste flow categories - O2CJ (MDF top and legs with bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Radioactive waste	kg	8.58E-03	6.32E-06	2.69E-06	8.59E-03	-1.45E-05
Hazardous waste	kg	9.56E-03	4.32E-04	7.44E-04	1.07E-02	1.38E-03
Non-hazardous waste	kg	7.96E+01	1.22E+00	5.46E+01	1.35E+02	-2.97E+01

Table 14 Output flow categories – O2CJ (MDF top and legs with bracket)

able it eatpathen eategened elect (mbi top and legs mai bracket)										
Impact category	Unit	Upstream	Core	Downstream	Total	Other				
		processes	processes	processes		environment				
				with landfill						

						al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

O2CJ-Particle board tabletop and legs without bracket

Table 15 Life cycle impacts – O2CJ (particle board top and legs without bracket)

Impact co	<u>e cycle impacts –</u> ategory	Unit	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environme
					with landfill		ntal stage-
							Recycling
			A1-A2	A3-A4	B1-C4		D
Global	Fossil	kg CO ₂	5.04E+02	4.11E+01	1.27E+02	6.72E+02	-2.82E+02
warmin		eq.					
g	Biogenic	kg CO ₂	-3.66E+01	2.07E-02	9.39E+01	5.74E+01	-2.54E-01
potentia		eq.					
1	CO2 eq. from	kg CO ₂	5.52E+01	1.33E-01	1.02E-01	5.55E+01	-2.41E+00
(GWP)	land	eq.					
	transformation						
	Total	kg CO ₂	5.32E+02	4.12E+01	2.21E+02	7.95E+02	-2.83E+02
		eq.					
Abiotic de	epletion	kg Sb eq.	1.14E-02	2.32E-05	1.02E-04	1.16E-02	-7.87E-05
Abiotic de	epletion (fossil	MJ	4.86E+03	3.91E+02	1.69E+03	6.94E+03	-1.67E+03
fuels)							
Ozone lay	er depletion	kg CFC-11	1.82E-05	2.80E-06	1.87E-05	3.97E-05	-6.12E-06
(ODP)		eq.					
Photoche	mical oxidation	kg	1.60E+00	3.65E-01	2.75E+00	4.70E+00	-8.64E-01
		NMVOC					
Acidificati	ion	kg SO ₂	2.11E+00	2.05E-01	5.91E-01	2.91E+00	-7.02E-01
		eq.					
Eutrophic	ation	kg PO ₄ 3-	7.28E-01	4.86E-02	1.31E-01	9.08E-01	-1.23E-01
		eq.					
Water use)	m³	1.71E+03	3.13E+02	3.09E+02	2.33E+03	-5.72E+03

Table 16 Resource use - O2CJ (particle board top and leas without bracket)

Tuble to kest	ble to kesource use - 02C3 (particle board top and legs without bracket)									
Impact cate	Impact category		Upstream	Core	Downstream	Total	Other			
			processes	processes	processes		environment			
					with landfill		al stage-			
							Recycling			
			A1-A2	A3-A4	B1-C4		D			
Primary	Use as energy	MJ	1.00E+03	9.36E+00	5.41E+00	1.02E+03	-1.47E+02			
energy	carrier									
resources	Use as raw	MJ	0	0	0	0	0.00E+00			
	materials									

Renewabl	Total	MJ	1.00E+03	9.36E+00	5.41E+00	2.17E+03	-1.47E+02
е							
Primary	Use as energy	MJ	5.24E+03	4.20E+02	1.80E+03	2.10E+04	-1.77E+03
energy	carrier						
resources	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0
Non-	materials						
renewable	Total	MJ	5.24E+03	4.20E+02	1.80E+03	2.10E+04	-1.77E+03
Secondary r	naterial	kg	0	0	0	0	0
resources							
Renewable s	secondary fuels	MJ	0	0	0	0	0
Non-renewable secondary		MJ	0	0	0	0	0
fuels							
Net use of fr	esh water	m³	4.16E+01	7.28E+00	7.19E+00	6.68E+01	-1.33E+02

Table 17: Other impacts – O2CJ (particle board top and legs without bracket)

Impact category	Unit	Upstrea	Core	Downstream	Total	Other
		m	processes	processes		environment
		processe		with landfill		al stage-
		s				Recycling
		A1-A2	A3-A4	B1-C4		D
Land use	species	1.46E-07	1.36E-08	1.10E-08	1.71E-07	-7.03E-08
	.yr					
Human toxicity, cancer	CTUh	9.27E-08	1.08E-09	3.45E-09	9.72E-08	-2.29E-08
Human toxicity, non-cancer	CTUh	1.59E-08	1.92E-10	1.81E-09	1.79E-08	-8.25E-09
Freshwater ecotoxicity	CTUe	6.05E-01	4.85E-02	1.67E-01	8.21E-01	-1.91E-01

Table 18 Waste flow categories - O2CJ (particle board top and legs without bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Radioactive waste	kg	8.58E-03	6.32E-06	2.66E-06	8.59E-03	-1.45E-05
Hazardous waste	kg	8.28E-03	4.32E-04	7.37E-04	9.45E-03	1.38E-03
Non-hazardous waste	kg	6.29E+01	1.21E+00	5.50E+01	1.19E+02	-2.97E+01

Table 19 Output flow categories - O2CJ (particle board top and legs without bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0

Medium density fibreboard tabletop and legs without bracket

Table 20 Life cycle impacts – O2CJ (MDF top and legs without bracket)

			, ,				
Impact category		Unit	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environme
					with landfill		ntal stage-
							Recycling
			A1-A2	A3-A4	B1-C4		D
Global	Fossil	kg CO ₂	5.05E+02	4.80E+01	1.29E+02	6.82E+02	-2.83E+02
warmin		eq.					
g	Biogenic	kg CO ₂	-4.62E+01	3.63E-02	9.51E+01	4.89E+01	-2.53E-01
potentia		eq.					
1	CO2 eq. from land	kg CO ₂	8.00E-01	7.67E-05	4.24E-04	8.01E-01	-1.05E-03
(GWP)	transformation	eq.					
	Total	kg CO ₂	4.60E+02	4.80E+01	2.24E+02	7.32E+02	-2.83E+02
		eq.					
Abiotic de	epletion	kg Sb	1.14E-02	2.94E-05	1.03E-04	1.16E-02	-7.87E-05
		eq.					
Abiotic de	epletion (fossil	MJ	4.96E+03	3.93E+02	1.71E+03	7.06E+03	-1.67E+03
fuels)							
Ozone lay	er depletion (ODP)	kg	1.81E-05	2.81E-06	1.89E-05	3.98E-05	-6.11E-06
		CFC-11					
		eq.					
Photoche	mical oxidation	kg	1.60E+00	3.80E-01	2.76E+00	4.74E+00	-8.63E-02
		NMVOC					
Acidification		kg SO ₂	2.13E+00	2.11E-01	5.96E-01	2.94E+00	-7.01E-01
		eq.					
Eutrophication		kg	7.34E-01	5.09E-02	1.33E-01	9.18E-01	-1.23E-01
		PO ₄ ³⁻					
		eq.					
Water use		m³	1.98E+03	3.45E+02	3.11E+02	2.64E+03	-5.72E+03

Table 21 Resource use - O2CJ (MDF top and legs without bracket)

Impact category		Unit	Upstream	Core	Downstream	Total	Other
			processes	processes	processes		environme
					with landfill		ntal stage-
							Recycling
			A1-A2	A3-A4	B1-C4		D
Primary	Use as energy	MJ	1.17E+03	1.35E+01	5.43E+00	1.19E+03	-1.47E+02
energy	carrier						
resources	Use as raw	MJ	0	0	0	0	0
Renewable	materials						
	Total	MJ	1.17E+03	1.35E+01	5.43E+00	1.19E+03	-1.47E+02
Primary	Use as energy	MJ	5.56E+03	4.22E+02	1.81E+03	7.80E+03	-1.77E+03
energy	carrier						
resources	Use as raw	MJ	3.26E+00	0	0	3.26E+00	0
Non-	materials						
renewable	Total	MJ	5.56E+03	4.22E+02	1.81E+03	7.80E+03	-1.77E+03
Secondary material		kg	0	0	0	0	0
resources							
Renewable secondary fuels		MJ	0	0	0	0	0

Non-renewable secondary	MJ	0	0	0	0	0
fuels						
Net use of fresh water	m³	4.71E+01	8.01E+00	7.23E+00	6.24E+01	-1.33E+02

Table 22 Other impacts – O2CJ (MDF top and legs without bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environment
				with landfill		al stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Land use	speci					
	es.yr	1.68E-07	1.54E-08	1.11E-08	1.95E-07	-7.02E-08
Human toxicity, cancer	CTUh	9.5E-08	1.08E-09	3.49E-09	9.96E-08	-2.31E-08
Human toxicity, non-cancer	CTUh	1.62E-08	1.92E-10	1.83E-09	1.82E-08	-8.25E-09
Freshwater ecotoxicity	CTUe	0.617226	0.048482	0.169409	8.35E-01	-1.92E-01

Table 23 Waste flow categories - O2CJ (MDF top and legs without bracket)

Table 25 Waste new Gategories G200 (Mb) top and legs without brackety								
Impact category	Unit	Upstream	Core	Downstream	Total	Other		
		processes	processes	processes		environment		
				with landfill		al stage-		
						Recycling		
		A1-A2	A3-A4	B1-C4		D		
Radioactive waste	kg	8.58E-03	6.47E-06	2.69E-06	8.59E-03	-1.45E-05		
Hazardous waste	kg	0.009545	0.000433	0.000743	1.07E-02	1.41E-03		
Non-hazardous waste	kg	73.57635	1.218906	54.73158	1.30E+02	-2.97E+01		

Table 24 Output flow categories – O2CJ (MDF top and legs without bracket)

Impact category	Unit	Upstream	Core	Downstream	Total	Other
		processes	processes	processes		environmental
				with landfill		stage-
						Recycling
		A1-A2	A3-A4	B1-C4		D
Reuse	kg	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0
Energy recovered	MJ	0	0	0	0	0
Energy exported	MJ	0	0	0	0	0
Energy exported, thermal	MJ	0	0	0	0	0