

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for

Mosaic from SILKARSTONE

Programme:	EPD Turkey, a fully aligned regional programme www.epdturkey.org	The International EPD® System www.environdec.com
Programme operator:	EPD Turkey: SÜRATAM - Turkish Centre for Sustainable Production Research & Design Nef 09 B Blok No:7/15 34415 Kagıthane/Istanbul, TURKEY	EPD International AB
EPD registration number:	S-P-01983	
Publication date:	18.12.2020	
Validity date:	17.11.2025	
Revision date:	01.09.2021	
Revision version:	1.1	
Geographical scope:	Global	

Owner of the EPD:

Silkar Madencilik San. ve Tic. A.S. Silkar Plaza Orta Mahalle Topkapı Maltepe Cad. NO:6 Bayrampaşa/Istanbul, Turkey

^{*}Product name and brand name changed from earlier version to version 1.1 along with minor editorial changes.

Programme Information

Programme

EPD Turkey, a fully aligned regional programme

SÜRATAM - Turkish Centre for Sustainable Production Research & Design Nef 09 B Blok No:7/15 34415 Kağıthane/Istanbul, TURKEY

> www.epdturkey.org info@epdturkey.org

The International EPD® System

EPD International AB Box 210 60 SE-100 31 Stockholm Sweden

www.environdec.com info@environdec.com

Product Category Rules (PCR): 2019:14 Version 1.0, 2019-12-20, Construction Products and CPC 54 Construction Services, EN 15804:2012 + A2:2019 Sustainability of Construction Works

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

EPD process certification

EPD verification (✓)

Third party verifier: Vladimír Kočí, PhD

Approved by: The International EPD® System

Procedure for follow-up of data during EPD validity involves third party verifier:

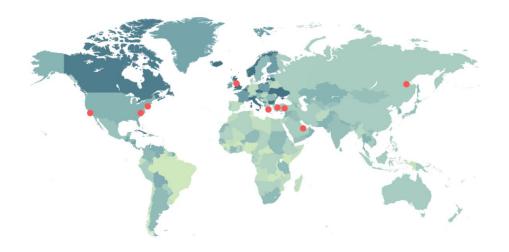
Yes

No

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

About Company

At SilkarStone, we are proud to be a leading stone manufacturer, producing a variety of natural stone, mosaics, slabs, and tiles, and exporting product to over 35 countries across the globe.


Our company was established over thirty years ago, owns multiple quarries in Turkey and Greece, and two factories in Turkey. This vertical integration allows product quality to be controlled from start to finish while providing unparalleled service to clients planning complex architectural projects. With showrooms in London and Istanbul, as well as a joint venture in Qatar, China and the United States, we are able to assist with projects all over the world, providing quality custom products for large-scale bespoke projects.

Through our sister company AKDO Intertrade, exclusive products are distributed to more than 350 dealers under the "AKDO" brand in the luxury tile and stone market of the United States.

Silkar is one of the largest mosaic manufacturers in the world, with exclusive designs and an impressive palette of natural stone colors. Our ability to produce incredible details custom mosaics and exclusive mosaic tiles make Silkar a unique company in the design world.

In addition to offering slabs, mosaics, and cut-to-size tile, we continually invest in innovation beyond traditional stone product. Because of investments in new technologies such as lightweight laminated stone panels, Silkar has experienced great success within industries such as luxury yachting, furniture, interior, and exterior wall cladding, and more.

After working with mother nature's product for so long, we respect the earth and green movements. To date, Silkar continues to set standards in the natural stone industry with sustainable manufacturing. As a result of EPD (environmental product deceleration) studies. we have calculated environmental impact within the complete life cycle for nine products according to ISO 14044 standard and published third-party approved statements. Silkar has EN ISO 9001 Quality Management System, EN ISO 14001 Environmental Management System and ISO 45001 Occupational Health & Safety Management System Certifications. We hope to be your solution partner in the natural stone business. Allow us to show you why SilkarStone has become an international leader in the natural stone industry.

Product Information

Mosaic lighten the surfaces by covering them. The motifs in the mosaic provide a patterned coating surface and give an optical depth. The use of mosaics in the surface is intended the destroy the masses and the contradictions of the structure; the surface becomes bright & shiny and looks like a multicolored mantle made of delicate, soft, and superficial material. In every design, mosaics imply different ways of living and feeling; and the mosaic stories give a different spirit to every living space, besides wet spaces such as kitchen, bathroom, sauna, and pool.

Silkar offers custom design, and production services for individuals and architectural projects apart from its portfolio with over 4000 different mosaic models. The mosaic surfaces offered by the architectural projects are completed with mosaic patterns, borders, liners, molding, and medallions.

SILKARSTONE Mosaic is a natural stone with a density of 2.7 tons/m³. Weighing in 24 kg, SILKAR Mosaic is supported by 2% glue and glass wool net by weight.

The UN CPC code of the product is 3761.

Weight

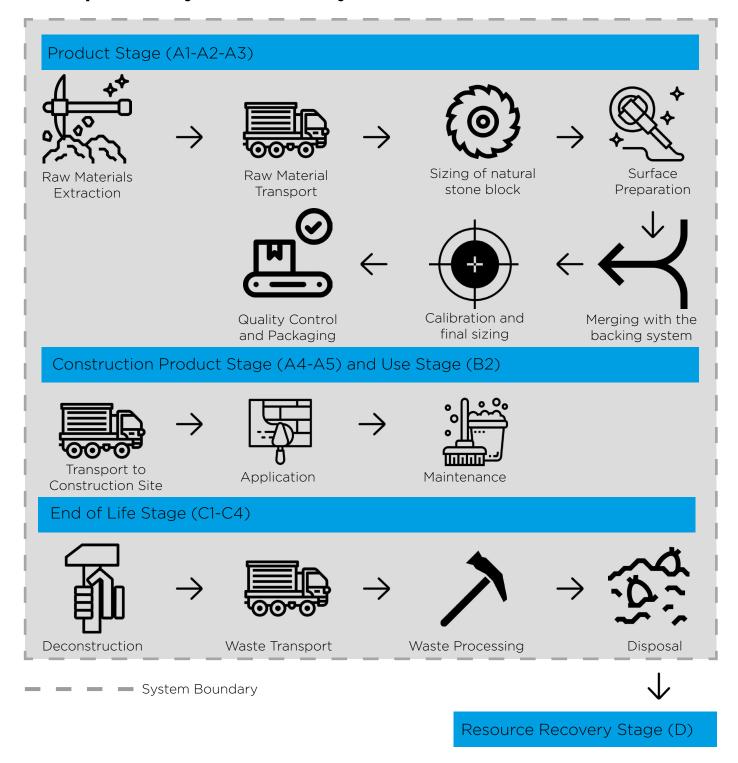
24 kg/m²

Installation

Adhesion; Cement, Epoxy, Silicone

LCA Information

Declared Unit	1 m ² of of SILKARSTONE Mosaic weights 24 kg
Time Representativeness	2019
Database(s) and LCA Software Used	TLCID ver. 1.0 (Turkish Lifecycle Inventory Database), Ecoinvent 3.6, SimaPro 9.1


The inventory for the LCA study is based on the 2019 production figures for SILKAR Mosaic by SILKARSTONE production plants in Bilecik, Turkey.

This EPD's system boundary is cradle to grave. The system boundary covers A1 - A3 product stages, A4 - A5 construction, B1 - B7 use and C1 - C4 end of life and D stages.

Upstream		o e							Downstream							Other Environmental Information
Raw Material Supply	Transport	Manufacturing	Transport	Construction Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction, demolition	Transport	Waste Processing	Disposal	Future reuse, recycling or energy recovery potentials
A1	A2	A3	A4	A5	B1	B2	В3	В4	B5	В6	B7	C1	C2	С3	C4	D
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

X = Included in LCA

Description of System Boundary

Excluded Lifecycle Stages: Travel to and from work by personnel, business travel, etc. are excluded life cycle stages.

A1: Raw Material Supply

SILKARSTONE's productions start from mining. The company supplies its raw materials necessary from its mine sites or other mines. Raw material supply includes raw material extraction/preparation and pre-treatment processes before production.

A2: Transportation

Transport is relevant for delivery of raw materials and other materials to the plant and the transport of materials within the plant. Transport of raw materials to production site is taken as the weight average values for transport from raw materials supplier in 2019.

A3: Manufacturing

The first phase starts with selecting the suitable raw material according to the order received; if necessary, the procurement of new raw material will be done. The raw material that are brought to the facilities are processed depending on the requested thickness and finish, then cut to size to the requested dimensions and taken to the mosaic workshop as mosaic chips. These mosaic chips will be processed into mosaic products. If it's a standart item, we will use rubber/metal molds that we already have at our side; and if it's a special request, we will print graphic designs laid on the floor to make a custom mosaic production with the special dimensions that is requested by our customers.

At multiple stages of the production, there are quality control processes. After the mosaic chips are processed into mosaic products, the final quality control will be made by the team captains. They will check each item and make corrections on these items if necessary, before putting them inside the mosaic boxes.

A4: Transport From the Gate to the Site

Transport of final product to construction site is taken as the weight average values for transport to customers in 2019.

Scenario Information	Value (expressed per functional/declared unit)
Vehicle Type	Road, Lorry, >32 metric ton, Euro 5 Motor Sea, Container Ship
Data Type	Related transport data from Ecoivent 3.6
Distance to Construction Site	189 km weighted average by lorry to all markets 12500 km weighted average by ship to all markets
Bulk Density of Transported Products	2700 kg/m³

A5: Assembly

This stage includes the SILKAR Mosaic application on the construction site. There is no energy use during installation, manpower is sufficient. For the installation of SILKAR Mosaic to the surface, 6-7 kg/m² cement based adhesive mortar is used according to the product technical datasheet.

Scenario Information	Value (expressed per functional/declared unit)
Ancillary Materials for Installation	6-7 kg/m² cement based adhesive mortar
Water Use	included in the mortar 0.00065 m³ water
Other Resource Use	Not necassary
Quantitative description of energy type (regional mix) and consumption during the installation process	Not necassary

B1: Use Stage is related to any impacts done during use of the product.

B2: Maintenance

This stage is related to any activities to maintain the function of the product in its life time. It includes cleaning with water and detergent. SILKARSTONE recommends using detergent containing stain remover or neutral low-sulphate and rinse with tap water after cleaning.

Monthly for about 50 years, 5 gr detergent and 0.1 L water use are assumed to clean the surfaces of natural stone products.

Scenario Information	Value (expressed per functional/declared unit)
Maintenance Process	Cleaning the surface of product
Maintenance Cycle	Monthly during 50 years (600 times)
Ancillary Materials for Maintenance	3 kg during whole cycle
Net Fresh Water Consumption	0.012 m ³
Energy Input During Maintenance	Not necassary

B3: Repair is not necessary in use.

B4 : Replacement is not necessary in use.

B5: **Refurbishment** is not necessary in use

B6: Operational Energy Use

No energy is used in operation.

B7: Operational Water Use

No water is used in operation.

C1: Deconstruction and Demolition

There is no energy use during uninstallation. manpower and some tools are sufficient.

C2: Transport

This stage includes the transportation of the discarded conductors to final disposal. Average distance from demolition site to waste processing site for final disposal is assumed to be 100 km.

C3: Waste Processing

If the wastes are going to landfill or to be inert filler, there is no need for any waste process.

C4: Disposal

Disposal is the final stage of product life. SILKAR Mosaic may dispose with any disposal scenario after construction and demolition as their final fate and modelled as such for this EPD. It is assumed that 25% of the wastes used as inert filler, 75% of the wastes send to the inert landfill site.

D: Benefits and Loads

In this stage, inert filler benefits were calculated specified in the disposal stage.

More Information

The results of the LCA with the indicators as Accordingly, hazardous and non-hazardous per EPD requirement are given in the LCA result waste amounts were also allocated from 2019 tables. All energy calculations were obtained total waste arisings. The natural stone sector has using Cumulative Energy Demand (LHV) a high amount of production wastage due to its methodology, while fresh water use is calculated nature. All production wastage is included in with selected inventory flows in SimaPro the LCA model. Wastes arising from production according to the PCR.

There are no co-products in the production. Hence, there is no need for co-product allocation. No substances included in the Candidate

products was presented.

are disposed in accordance with regional legal regulations and sent to inert waste sites.

List of Substances of Very High Concern for Energy consumptions and transports datasets authorization under the REACH regulations are were allocated based on the production present in SILKARSTONE's products, either figures in 2019 and the weighted averaged of above the threshold for registration with the environmental impacts for the SILKARSTONE's European Chemicals Agency or above 0.1% (wt/ wt).

	C)
	π	5
	Ú	ָל
,	$\frac{2}{2}$	<u> </u>
4	2	
Ĺ	۲	-
	ر	J
(ځ	
	2	
7	-	
	۲	5
	Ċ)
•	١.	
	U	ן נ
ľ	ところとして)
	$\check{\sigma}$	j
	\mathcal{C})
	\subseteq	
	<u>د</u>	
	_	
	π	Ž
	5	=
	ā)
	Č	ĺ
	٤	Ξ
	٦	-
	Ĺ)
	È	
	\geq	-
	_	i
L	1]

) : : : !)))))	- - -))) - - -)) -))									
Impact Category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	IJ	C2	C3	C4	
GWP - Fossil	kg CO_2 eq	1.23	1.44	5.57	8.24	3.24	1.68	0	2.98	0	0	0	0	0	0	0.218	0	0.126	-0.225
GWP - Biogenic	kg CO_2 eq	3.74E-3	572E-6	-2.13E+O	-2.13	9-325G-	29.0E-3	0	-6.95	0	0	0	0	0	0	158E-6	0	251E-6	9-36/1-
GWP - Luluc	kg CO ₂ eq	4.27E-3	545E-6	41.5E-3	0.046	2.07E-3	770E-6	0	4.29E+0	0	0	0	0	0	0	63.7E-6	0	35.3E-6	-130E-6
GWP - Total	kg CO ₂ eq	1.24	1.44	3.48	6.16	3.24	1.71	0	0.322	0	0	0	0	0	0	0.218	0	0.127	-0.226
ODP	kg CFC-11 eq	161E-9	322E-9	297E-9	780E-9	664E-9	105E-9	0	496E-9	0	0	0	0	0	0	51.3E-9	0	52.1E-9	-43.7E-9
AP	bə +H lom	0.010	0.018	0.030	0.059	0.094	0.007	0	0.041	0	0	0	0	0	0	0.001	0	0.001	-0.002
EP - Freshwater	kg PO ₄ eq	498E-6	84.1E-6	4.21E-3	0.005	140E-6	261E-6	0	1.27E-3	0	0	0	0	0	0	15.4E-6	0	13.0E-6	-33.3E-6
EP - Marine	kg N ed	0.003	0.005	900'0	0.014	0.023	0.002	0	0.040	0	0	0	0	0	0	0.0003	0	0.0004	-0.001
EP - Terrestrial	ba N lom	11.3	9:51	81.1	108	28.4	31.0	0	368	0	0	0	0	0	0	2.70	0	2.29	-3.35
POCP	kg NMVOC	0.010	0.015	0.016	0.041	0.067	0.005	0	0.019	0	0	0	0	0	0	0.001	0	0.001	-0.002
ADPE	bə qs бү	3.40E-6	18.4E-6	16.9E-6	38.7E-6	28.0E-6	109E-6	0	204E-6	0	0	0	0	0	0	3.72E-6	0	1.16E-6	-5.44E-6
ADPF	ſΨ	16.2	21.0	1.69	106	42.5	11.6	0	31.4	0	0	0	0	0	0	3.39	0	3.54	-3.21
WDP	m³ depriv.	1.37	0.055	5.00	6.42	0.074	0.175	0	11.6	0	0	0	0	0	0	0.011	0	0.158	-0.279
Md	disease inc.	1.30E-6	134E-9	175E-9	1.61E-6	124E-9	75.4E-9	0	605E-9	0	0	0	0	0	0	19.7E-9	0	23.3E-9	-21.4E-9
IR	kBq U-235 eq	0.064	0,103	0.120	0.287	0.196	0.064	0	0.195	0	0	0	0-	0	0	0.017	0	0.016	-0.017
ETP - FW	CTUe	11.3	9'51	81.1	108	28.4	31.0	0	368	0	0	0	0	0	0	2.70	0	2.29	-3.35
HTTP - C	CTUh	767E-12	540E-12	1.78E-9	3.09E-9	1.73E-9	521E-12	0	10.2E-9	0	0	0	0	0	0	66.6E-12	0	53.0E-12	-164E-12
HTTP - NC	CTUh	8.71E-9	16.3E-9	45.2E-9	70.2E-9	24.5E-9	15.6E-9	0	249E-9	0	0	0	0	0	0	3.08E-9	0	1.64E-9	-3.43E-9
SQP	Pt	1.94	6.91	205	223	12.2	19.2	0	321	0	0	0	0	0	0	3.89	0	7.41	62'9-
Acronyms	GWP-total: Climate change, GWP-fossil: Climate change- fossil, GWP-biogenic: Climate change - biogenic, GWP-luluc: Climate change - land use and transformation, ODP: Ozone layer depletion, AP: Acidification terrestrial and freshwater, EP-freshwater. Eutrophication freshwater, EP-marine: Eutrophication marine, EP-terrestrial; Eutrophication terrestrial, POCP: Photochemical oxidation, ADPE: Abiotic depletion - elements, ADPF: Abiotic depletion - fossil resources, WDP: Water scarcity, PM: Respiratory inorganics - particulate matter, IR: Ionising radiation, ETP-FW: Ecotoxicity freshwater, HTP-c: Cancer human health effects, HTP-nc: Non-cancer human health effects, ATP-nc: Non-cancer human health effects, SQP: Land use related impacts, soil quality.	nate chang yer depleti terrestrial, rganics - K	Je, GWP-foon, AP: Ao DOCP: Ph Sarticulate Sarticulate	ossil: Climal cidification otochemic matter, IR: d impacts,	e change terrestrial al oxidatic lonising r soil quality	- fossil, GW and fresh on, ADPE: , adiation, E	/P-biogenic: Climate change - biogenic, GWP-luluc: water, EP-freshwater: Eutrophication freshwater, EF Abiotic depletion - elements, ADPF: Abiotic depleti TP-FW: Ecotoxicity fre <mark>sh</mark> water, HTP-c: Cancer hum	c: Clin freshv oletior otoxi	nate chang vater: Eutr - elemen city freshw	ye - bi ophica ts, AD vater, H	ogenia ation 1 PF: A HTP-c	c, GW reshw biotic : Can	P-lulu 'ater, l deple cer hu	c: Clin EP-ma tion - uman	nate c arine: fossil health	Climate cha <mark>n</mark> ge - land use ² -marine: Eutrophication m on - fossil resources, WDP: nan health effects, HTP-nc:	nd use tion m WDP TP-nc	and trans harine, EP. : Water sc : Non-can	and transformation, larine, EP-terrestrial: Water scarcity, PM: Non-cancer human
Legend	A1: Raw Material Supply, A2: Transport, A3: Manufacturing, A1-A3: Sum of A1, Transport, C3: Waste Processing, C4: Disposal, D: Benefits and Loads Beyond the	al Supply, Waste Proc	A2: Transk essing, C4	oort, A3: N :: Disposal,	1anufactu D: Benefit	ring, A1-A3: s and Loads	.3: Sum of A1, ds Beyond the	A1, A the Sy	A2, and A3, A4: ⁻ System Boundary.	, A4: ⁻ ndary.	ransp	A4: Transport to	Site,	A5: II	ıstalla	A5: Installation, C1: De-Construction,	e-Con	struction,	C2: Waste
Disclaimer 1	This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.	egory deal r accidents construct	s mainly w s, occupati on materia	vith the eve onal expos als is also n	ntual impa ure nor du ot measur	act of low one to radio and the second secon	dose ionizir active wast indicator.	ng rad :e disp	liation on h oosal in un	dergro	healtl und f	of thacilitie	ie nuc is. Pot	lear fu ential	iel cyc	nuclear fuel cycle. It does not consider effects due to Potential ionizing radiation from the soil, from radon	n from	nsider effe the soil, f	ects due to rom radon
Disclaimer 2	The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.	his enviror	nmental in	pact indic	ator shall	w pesn eq	ith care as	the u	uncertainti	es on	these	resul	ts are	high	or as	there is lim	ited e	xperience	d with the

Mosaic
_
of
m^2
$\overline{}$
for
Use
Resource 1

Impact Category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7 .	Cl	C2	C3	C4	Ω
PERE	ſΜ	1.2	0.220	37.9	39.3	0.324	1.253	0	61.2	0	0	0	0	0	0	0.043	0	0.029	-0.066
PERM	MJ	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PERT	ſΜ	1.2	0.220	37.9	39.3	0.324	1.253	0	61.2	0	0	0	0	0	0	0.043	0	0.029	-0.066
PENRE	ſΜ	16	21.0	1.69	106	42.5	11.6	0	37.4	0	0	0	0	0	0	3.39	0	3.54	-3.21
PENRM	ſΜ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PENRT	ſΜ	16	21.0	1.69	106	42.5	11.6	0	37.4	0	0	0	0	0	0	3.39	0	3.54	-3.21
SM	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF	ſΜ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW	m ₃	0.132	0.004	0.089	0.225	0.005	0.034	0	0.881	0	0	0	0	0	0	0.001	0	0.004	-0.021
					Waste	Waste & Output Flows for 1 m 2 of Mosaic	ut Flows	for 1 r	m^2 of Md	Saic									
Impact Category	Unit	A1	A2	A3	A1-A3	A4	A5	B	B2	B3	B4	B5	B6	B7	C	C2	C3	C4	Δ
HWD	kg	0	0	0.012	0.012	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NHWD	kg	0	0	27.7	27.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RWD	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CRU	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	•0	0	0	0	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EE (Electrical)	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EE (Thermal)	MJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Acronyms	PERE: Use of renewable primary energy excluding resources used as raw materials, PERM: Use of renewable primary energy excluding resources used as raw materials, PENRM: Use of non-renewable primary energy excluding resources used as raw materials, PENRT: Total use of non-renewable primary energy, SM: Secondary material, RSF: Renewable secondary fuels, NRSF: Non-renewable secondary fuels, FW: Net use of fresh water, HWD: Hazardous waste disposed, NHWD: Non-hazardous waste disposed, RWD: Radioactive waste disposed, CRU: Components for reuse, MFR: Material for recycling, MER: Materials for energy recovery, EE (Electrical): Exported energy, electrical, EE (Thermal): Exported energy, Thermal.	enewable i ewable pri es used as indary fuel	primary en mary enerç ; raw mate s, FW: Net se, MFR: M	ergy exclu gy, PENRE: rials, PENF use of fre? aterial for i	iding reso Use of nc RT: Total u sh water, l recycling,	urces useo pn-renewak use of non- HWD: Haze MER: Mate	l as raw materials, vle primary energy renewable primar ardous waste disp grials for energy re	aterials energy prima ste disp ergy re	y excluding vy excluding vy energy sosed, NH scovery, El	Jse of I	renew. Jirces u Second on-ha	able pused a stary mused a zardoi ru. Expc	rimary s raw r nateria us was	renerg naterik I, RSF: te disk nergy	yy resk als, PE Rene Josed electr	ources us ENRM: Use wable sed RWD: R? ical, EE (1	ed as i condar adioac Therma	PERM: Use of renewable primary energy resources used as raw materials, excluding resources used as raw materials, PENRM: Use of non-renewable py energy. SM: Secondary material, RSF: Renewable secondary fuels, NRSF sed, NHWD: Non-hazardous waste disposed, RWD: Radioactive waste disposery, EE (Electrical): Exported energy electrical, EE (Thermal): Exported e	als, PERT: le primary RSF: Non- disposed, ed energy,
Result per fur	Result per functional declared unit	red unit																	

A1-A3	0	0.55
Unit	kg C	kg C
Biogenic Carbon Content	Biogenic carbon content in product	Biogenic carbon content in packaging

Additional Information

For the American market, environmental impacts were calculated with the TRACI 2.1 method as additional information. The results of the calculations taken with the same LCA model are given in the table below.

			Env	ironmental	Environmental Impacts for 1 m² of Mosaic	r 1 m² of M	osaic				
Impact Category	Unit	A1	A2	A3	A1-A3	A4	A5	B2	C2	C4	Q
GWP	kg CO_2 ed	1.22	1.42	5.49	8.13	3.21	1.68	7.17	0.216	0.123	-0.222
ODP	kg CFC-11 eq	175E-9	340E-9	338E-9	854E-9	701E-9	114E-9	526E-9	54.3E-9	55.0E-9	-46.5E-9
Smog	kg O ₃ ed	0.214	0.316	0.295	0.825	1.469	0.111	0.274	0.018	0.026	-0.042
АР	kg SO ₂ eq	600'0	0.016	0.025	0.050	0.079	900.0	0.029	0.001	0.001	-0.002
EP	kg N ed	0.004	0.002	0.032	0.038	0.005	0.003	0.051	0.0002	0.0002	-0.0004
Carcinogenics	CTUh	64.6E-9	40.4E-9	382E-9	487E-9	103E-9	40.6E-9	246E-9	5.74E-9	4.79E-9	-11.3E-9
No Carcinogenics	CTUh	180E-9	244E-9	1.30E-6	1.73E-6	274E-9	257E-9	2.63E-6	51.8E-9	14.8E-9	-56.3E-9
RE	kg PM2.5 eq	0.275	0.001	0.026	0.303	0.005	0.001	900.0	0.0002	0.0001	-0.0002
Ecotixicity	CTUe	7.84	8.60	41.3	57.7	13.4	9.39	136	1.67	0.723	-2.89
FFD	MJ surplus	1.90	3.04	6.58	11.5	6.23	1.13	3.16	0.486	0.512	-0.423
Acronyms	GWP: Global Warming Potential, ODP: Ozone Layer Depletion, AP: Acidification Potantial, EP: Eutrophication Potantial, FFD: Fossil fuel Depletion.	arming Poten Depletion.	ıtial, ODP: Oz	cone Layer De	epletion, AP: /	Acidification	Potantial, EP:	Eutrophicat	ion Potantial,		RE: Respiratory Effects,
Legend	A1: Raw Material Supply, A2: Transport, A3: Manu C2: Waste Transport, C3: Waste Processing, C4: I	Supply, A2: T port, C3: Was	ransport, A3 ste Processing	: Manufacturi 3, C4: Disposa	ıfacturing, A1-A3: Sum of A1, A2, and A3, A4: Transport to Site, A5: Installation, C1: De-Construction, Disposal, D: Benefits and Loads Beyond the System Boundary.	m of A1, A2, a and Loads B€	nd A3, A4: Tra eyond the Sya	ansport to Sit stem Bounda	ce, A5: Installa Iry.	ation, C1: De-C	onstruction,

References

/GPI/ General Programme Instructions of the International EPD® System. Version 3.0.

/EN ISO 9001/ Quality Management Systems - Requirements

/EN ISO 14001/ Environmental Management Systems - Requirements

/ISO 45001/ Occupational Health & Safety Management System - Requirements

/ISO 14020:2000/ Environmental Labels and Declarations — General principles

/EN 15804:2012+A2:2019/ Sustainability of construction works - Environmental Product Declarations — Core rules for the product category of construction products

/ISO 14025/ DIN EN ISO 14025:2009-11: Environmental labels and declarations - Type III environmental declarations — Principles and procedures

/ISO 14040/44/ DIN EN ISO 14040:2006-10, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006) and Requirements and guidelines (ISO 14044:2006)

/PCR for Construction Products and CPC 54 Construction Services/ Prepared by IVL Swedish Environmental Research Institute, Swedish Environmental Protection Agency, SP Trä, Swedish Wood Preservation Institute, Swedisol, SCDA, Svenskt Limträ AB, SSAB, The International EPD System, 2019:14 Version 1.1 DATE 2019-12-20

/The International EPD® System/ The International EPD® System is a programme for type III environmental declarations, maintaining a system to verify and register EPD®s as well as keeping a library of EPD®s and PCRs in accordance with ISO 14025. www.environdec. com

/Ecoinvent / Ecoinvent Centre, www.ecoinvent.org

/SimaPro/ SimaPro LCA Software, Pré Consultants, the Netherlands, www.pre-sustainability.com

/TLCID/ Turkish Life Cycle Inventory Database, Turkish Center for Sustainable Production Research and Design (SURATAM), www.suratam.org

Contact Information

EPD registered through fully aligned regional programme: EPD Turkey:

www.epdturkey.org

The International EPD® System www.environdec.com

Programme

THE INTERNATIONAL EPD® SYSTEM

THE INTERNATIONAL EPD® SYSTEM

Programme operator

EPD Turkey:

SÜRATAM – Turkish Centre for Sustain- Box 210 60 able Production Research & Design SE-100 31 S Nef 09 B Blok No:7/15,

34415 Kağıthane / Istanbul, TURKEY

www.epdturkey.org info@epdturkey.org EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden

www.environdec.com info@environdec.com

Contact: Mesut Kandemir

Quality Management Representative

Phone: +90 228 216 01 90

Owner of the declaration

Silkar Madencilik San. ve Tic. A.Ş. Orta Mahalle Topkapı Maltepe Cad. NO:6 Silkar Plaza

Bayrampasa-Istanbul, Turkey

www.silkarstone.com info@silkarstone.com

LCA practitioner

Turkey:

Lalegül Sok. No:7/18 Kağıthane 34415 4. Levent - Istanbul, Turkey +90 212 281 13 33 United Kingdom: 4 Clear Water Place Oxford OX2 7NL, UK 0 800 722 0185

www.metsims.cominfo@metsims.com

3rd party verifier

Vladimír Kocí, PhD LCA Studio Šárecká 5,16000 Prague 6 - Czech Republic www.lcastudio.cz

