



# **ENVIRONMENTAL PRODUCT DECLARATION**



# ISOLIMPIA<sup>®</sup> Thermo-acoustic insulation in polyester

EPD® based on PCR 2012: 01 Construction products and construction services v. 2.3 and the Sub-PCR-I Thermal insulation products

EPD® Registration number: S-P-01627 Publication date: 05/07/2019 End Validity: 03/07/2024 International UN CPC code 369 The International EPD® System EPD International AB www.environdec.com

In accordance with ISO 14025 and EN 15804





# **1 GENERAL INFORMATION**

## 1.1 Name and address of the Manufacturer

OVATTIFICIO OLIMPIA DI ZORZATO ALBERTO & C. Via S.Polo, 115 / A 35020 - S. Angelo di Piove (PD) Italy Tel. +39 049 9793801 Fax +39 049 5846669 Website: www.olimpiaitalia.com

#### **1.2 Product description and main components**

ISOLIMPIA® is a thermally insulating material and an acoustic absorbent made of 100% thermobounded polyester fiber (Polyethylene terephthalate - Polyethylene terephthalate Copolymer).

#### 1.3 Functional unit

The functional unit of the study, in line with the objective, the field of application and the "2012 PCR: 01 ver 2.3, 2018-11-15" Construction products and construction services "Sub-PCR-I Thermal insulation products (EN 16783)", is 1 m<sup>2</sup> of insulating panel with specific R-value (Thermal Resistance expressed in m<sup>2</sup>K/W) usable according to the applications provided in Annex A of Standard EN 16783: 2017, with density 20 kg/m<sup>3</sup> and  $\lambda$  of 0,0389 W/m<sup>o</sup>K and with panel nominal thickness 20 mm, 50 mm and 100 mm.

### 1.4 Name of the program used

The International EPD® System EPD International AB Box 210 60 SE-100 31 Stockholm, Sweden Email: info@environdec.com www.environdec.com

#### 1.5 System boundaries

The Analysis of the Life Cycle developed is of the "Cradle to Gate" type, A1-A3 (according to EN 16783: 2017).

#### **1.6 Reference production site**

The insulation is made only in the production site of S. Angelo di Piove (PD).

# 2 DESCRIPTION OF THE ORGANIZATION AND OF THE PRODUCT

#### 2.1 Ovattificio Olimpia

Since 1971 Olimpia continues the evolution and the research dedicating the production to mattress felt and textile articles for the padding of mattresses and pillows. Since the eighties he has developed an important commercial network in European markets (in particular France, Germany, Austria and Switzerland), becoming in a few years a point of reference for companies dealing with mattresses, pillows and furniture.

The Company's potential has developed considerably when, at the end of the 1990s, Olimpia revolutionized its systems and promoted new investments, expanding the range of products and entering the thermo-acoustic insulation and filtration sector.





Products are certified according to the criteria set by the most important regulations in the textile sector. From safety to health, to the ecological compatibility of products, the efforts are aimed at offering increasingly safe and environmentally friendly products.

The Company has obtained ISO 9001: 2015 quality certification and is able to meet the needs of different national and European markets. Its registered and operational office is in S. Angelo di Piove in the province of Padua – Italy.

#### 2.2 Technical characteristics of the product and composition

The composition of the product, net of packaging, consists of 100% polyester, of which about 70% of recycled PET from post-consumer white bottles and 30% of thermobonding virgin PET. The white polyethylene terephthalate fiber guarantees a constant diameter.

ISOLIMPIA® has been designed for building applications, as well as for the most common applications in the railway sector and for general and industrial uses.

The characteristic of the thermo-binding is the complete recyclability of the product and the cutouts of its workings and for this reason ISOLIMPIA® can be considered to all intents and purposes 100% recyclable. On this characteristic, attention must be increasingly focused because, if recyclability does not affect ecological culture, it certainly concerns the cost of disposing of any clippings.

No less important is the fact that ISOLIMPIA® does not fray and does not disperse dust, particles or fibrils that are potentially harmful to humans in the environment.



Picture 1. Product images

It can be produced in different thickness and density variants, which allow it to meet the numerous technical performance requirements and to comply with current regulations both in terms of thermal insulation, sound insulation and reaction to fire.

| Thickness                   | From 10 up to 100 mm +/- 5 mm                                                                                                                                                                                                         |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fire reaction class         | <ul> <li>Accordig to EN 13501-1: Bs2d0 for density 20 kg/m<sup>3</sup> and thickness from 10 to 60 mm</li> <li>According to italian regulation: CL1 for density 10 and 40 kg/m<sup>3</sup> and thickness from 20 to 100 mm</li> </ul> |
| Smoke class                 | according to AFNOR NF F16-101 for density 10 kg/m <sup>3</sup> and 40 kg/m <sup>3</sup> : F1 class                                                                                                                                    |
| Temperature range of<br>use | From – 40°C up to +100 °C                                                                                                                                                                                                             |
| Thermal conductivity        | "λ"= 0,0389 [W/m°K] at density 20 kg/m <sup>3</sup>                                                                                                                                                                                   |
| Fiber diameter              | 27,9 [μm] (calculated)                                                                                                                                                                                                                |
| Lower calorific value       | 21600 [Kj/Kg]                                                                                                                                                                                                                         |
| Specific Heat               | 0,24 [Kj/Kg°K]                                                                                                                                                                                                                        |

 Table 1. Isolimpia technical features





The product does not contain substances present in "Candidate List of Substances of Very High Concern (SVHC) for authorization" in percentage higher than 0.1%.

# **3 DECLARATION OF ENVIRONMENTAL PERFORMANCES**

#### 3.1 Evaluation method

The quantification of environmental performance was carried out as required by the PCR Construction Products and Construction Services 2012: 01 version 2.3 valid until 2020-03-03 and Sub-PCR to PCR 2012: 01 dates 2018-11-16 thermal insulation products (EN 16783: 2017) according to the Life Cycle Analysis methodology (LCA - Life Cycle Assessment).

#### 3.2 The declared unit

The functional unit of the study, in line with the objective, the field of application and the "2012 PCR: 01 ver 2.3, 2018-11-15" Construction products and construction services "Sub-PCR-I Thermal insulation products (EN 16783)", is 1 m<sup>2</sup> of insulation panel with specific R-value (Thermal Resistance expressed in m<sup>2</sup>K/W), usable according to the applications provided in Annex A of Standard EN 16783: 2017, with density 20 kg/m<sup>3</sup> and  $\lambda$  of 0,0389 W/m°K and with nominal panel thickness 20 mm, 50 mm and 100 mm.

|        | λ [W/mK]                                | 0,0389 | 0,0389 | 0,0389 |
|--------|-----------------------------------------|--------|--------|--------|
| INPUT  | Density [kg/m <sup>3</sup> ]            | 20     | 20     | 20     |
|        | Thilkness [mm]                          | 20     | 50     | 100    |
|        | Thermal resistance [m <sup>2</sup> K/W] | 0,51   | 1,29   | 2,57   |
| OUIPUI | Need of material 1 m <sup>2</sup> [kg]  | 0,40   | 1,00   | 2,00   |

**Table 2.** Material requirement for 1 m<sup>2</sup> of insulation

#### 3.3 System boundaries

The developed LCA is of the "Cradle-to-gate" type (A1-A3).

Upstream Processes include phase A1 (extraction of raw materials and processing of semifinished products).

Core Processes include phases A2 (transport to the factory) and A3 (production).

X= included

MND = not included





| Product stage       |           | Construction<br>process stage |           |                           | Use stage |             |        |             | End<br>st     | of life<br>age             |           | Benefit and<br>load beyond<br>system<br>boundary |          |                                                |
|---------------------|-----------|-------------------------------|-----------|---------------------------|-----------|-------------|--------|-------------|---------------|----------------------------|-----------|--------------------------------------------------|----------|------------------------------------------------|
| Raw material supply | Transport | Manufacturing                 | Transport | Construction installation | Use       | Maintenance | Repair | Replacement | Refurbishment | Deconstruction, demolition | Transport | Waste processing                                 | Disposal | Reuse, recycling or energy recovery potentials |
| A1                  | A2        | A3                            | A4        | A5                        | B1        | B2          | B3     | B4          | B5            | C1                         | C2        | C3                                               | C4       | D                                              |
| ×                   | ×         | х                             | MND       | MND                       | MND       | MND         | MND    | MND         | MND           | MND                        | MNC       | MND                                              | MND      | MND                                            |

In case of selective demolition of buildings, the product can be recovered in its original form, and then recycled for the same use or sent to companies specialized in the recovery of polyester fiber.



Picture 2. ISOLIMPIA production scheme and system boundaries

The geographical representation of the study is Europe.

The use phase of the thermo-acoustic insulation of walls and roofs is associated with the duration of the building in which it is used, estimated for European countries around 50 years (as reported in EN 16783: 2017).

### 3.4 Cut-off and allocation criteria

Processes that contribute less than 1% of the total environmental impact for each impact category have been omitted from the inventory analysis.

The allocation between products and co-products is based on the mass principle.





#### 3.5 Data quality

The LCA analysis was carried out with reference to the 2018 data, collected in the establishment of the Ovattificio Olimpia in S. Angelo di Piove (PD).

The analysis and monitoring of environmental performance took place using the SimaPro vs 9.0 software and the Ecoinvent vs 3.5 database.

The contribution of generic data on the final results is less than 1% for each impact category.

Taking into account the fact that the process considered takes place completely within the Italian territory, the data relating to the energy aspects refer to the energy mix of the Italian supplier, with the exception of the process of realization of some raw materials, for which it was made reference to the energy mix of the country of production.

Data collection was carried out according to the methods set forth in the ISO standard 14044, EN 15804 and EN 16783.

#### 3.6 Product environmental profile

Environmental performance includes information on resource use, energy consumption, pollutant emissions over the entire life cycle of the product and potential environmental impacts. The following table shows information on resource consumption.

|                                                                                                                     |      | Total consumption of resources per 1 m <sup>2</sup> of a panel with<br>a thickness of 20 mm and with R 0,51 m2K/W |       |       |        |  |  |
|---------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--|--|
| Resource Use                                                                                                        | Unit | A1                                                                                                                | A2    | A3    | TOTAL  |  |  |
| Use of renewable primary energy<br>excluding renewable primary<br>energy resources used as raw<br>materials         | MJ   | 0,703                                                                                                             | 0,025 | 0,085 | 0,813  |  |  |
| Use of renewable primary energy resources used as raw materials                                                     | MJ   | 0,000                                                                                                             | 0,000 | 0,000 | 0,000  |  |  |
| Total use of renewable primary<br>energy resources                                                                  | MJ   | 0,703                                                                                                             | 0,025 | 0,085 | 0,813  |  |  |
| Use of non-renewable primary<br>energy excluding non-renewable<br>primary energy resources used<br>as raw materials | MJ   | 9,861                                                                                                             | 1,208 | 2,199 | 13,268 |  |  |
| Use of non-renewable primary<br>energy resources used as raw<br>materials                                           | MJ   | 12,916                                                                                                            | 0,000 | 0,000 | 12,916 |  |  |
| Total use of non-renewable<br>primary energy resources                                                              | MJ   | 22,777                                                                                                            | 1,208 | 2,199 | 26,184 |  |  |
| Use of secondary materials                                                                                          | MJ   | 0,000                                                                                                             | 0,000 | 0,000 | 0,000  |  |  |
| Use of secondary renewable fuels                                                                                    | MJ   | 0,000                                                                                                             | 0,000 | 0,000 | 0,000  |  |  |
| Uso di materiali secondari                                                                                          | kg   | 0,294                                                                                                             | 0,000 | 0,000 | 0,294  |  |  |
| Uso di combustibili secondari<br>rinnovabili                                                                        | MJ   | 0,000                                                                                                             | 0,000 | 0,000 | 0,000  |  |  |
| Use of secondary non-renewable fuels                                                                                | MJ   | 0,000                                                                                                             | 0,000 | 0,000 | 0,000  |  |  |
| Use of net fresh water                                                                                              | m³   | 0,320                                                                                                             | 0,007 | 0,036 | 0,363  |  |  |

**Table 3.** Total consumption of resources per 1  $m^2$  of a panel with a<br/>thickness of 20 mm and with R = 0,51 [ $m^2$ K/W]





|                                                                                                                     |                | Total consumption of resources per 1 m <sup>2</sup> of a panel with a thickness of 50 mm and with R 1,29 m <sup>2</sup> K/W |       |       |        |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--|--|
| Resource Use                                                                                                        | Unit           | A1                                                                                                                          | A2    | A3    | TOTAL  |  |  |
| Use of renewable primary energy<br>excluding renewable primary<br>energy resources used as raw<br>materials         | MJ             | 1,756                                                                                                                       | 0,062 | 0,213 | 2,031  |  |  |
| Use of renewable primary energy resources used as raw materials                                                     | MJ             | 0,000                                                                                                                       | 0,000 | 0,000 | 0,000  |  |  |
| Total use of renewable primary<br>energy resources                                                                  | MJ             | 1,756                                                                                                                       | 0,062 | 0,213 | 2,031  |  |  |
| Use of non-renewable primary<br>energy excluding non-renewable<br>primary energy resources used<br>as raw materials | MJ             | 24,654                                                                                                                      | 3,019 | 5,498 | 33,170 |  |  |
| Use of non-renewable primary<br>energy resources used as raw<br>materials                                           | MJ             | 32,290                                                                                                                      | 0,000 | 0,000 | 32,290 |  |  |
| Total use of non-renewable<br>primary energy resources                                                              | MJ             | 56,944                                                                                                                      | 3,019 | 5,498 | 65,460 |  |  |
| Use of secondary materials                                                                                          | MJ             | 0,000                                                                                                                       | 0,000 | 0,000 | 0,000  |  |  |
| Use of secondary renewable fuels                                                                                    | MJ             | 0,000                                                                                                                       | 0,000 | 0,000 | 0,000  |  |  |
| Uso di materiali secondari                                                                                          | kg             | 0,735                                                                                                                       | 0,000 | 0,000 | 0,735  |  |  |
| Uso di combustibili secondari<br>rinnovabili                                                                        | MJ             | 0,000                                                                                                                       | 0,000 | 0,000 | 0,000  |  |  |
| Use of secondary non-renewable fuels                                                                                | MJ             | 0,000                                                                                                                       | 0,000 | 0,000 | 0,000  |  |  |
| Use of net fresh water                                                                                              | m <sup>3</sup> | 0,800                                                                                                                       | 0,017 | 0,091 | 0,908  |  |  |

**Table 4.** Total consumption of resources per 1  $m^2$  of a panel with a<br/>thickness of 50 mm and with R = 1,29 [m<sup>2</sup>K/W]

|                                                                                                                     |                | Total consumption of resources per 1 m2 of a pane<br>with a thickness of 100 mm and with R 2,57 m <sup>2</sup> K/W |       |        |         |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------|-------|--------|---------|--|--|
| Resource Use                                                                                                        | Unit           | A1                                                                                                                 | A2    | A3     | TOTAL   |  |  |
| Use of renewable primary energy<br>excluding renewable primary<br>energy resources used as raw<br>materials         | MJ             | 3,513                                                                                                              | 0,124 | 0,426  | 4,063   |  |  |
| Use of renewable primary energy resources used as raw materials                                                     | MJ             | 0,000                                                                                                              | 0,000 | 0,000  | 0,000   |  |  |
| Total use of renewable primary<br>energy resources                                                                  | MJ             | 3,513                                                                                                              | 0,124 | 0,426  | 4,063   |  |  |
| Use of non-renewable primary<br>energy excluding non-renewable<br>primary energy resources used<br>as raw materials | MJ             | 49,307                                                                                                             | 6,038 | 10,996 | 66,341  |  |  |
| Use of non-renewable primary<br>energy resources used as raw<br>materials                                           | MJ             | 64,580                                                                                                             | 0,000 | 0,000  | 64,580  |  |  |
| Total use of non-renewable<br>primary energy resources                                                              | MJ             | 113,887                                                                                                            | 6,038 | 10,996 | 130,921 |  |  |
| Use of secondary materials                                                                                          | MJ             | 0,000                                                                                                              | 0,000 | 0,000  | 0,000   |  |  |
| Use of secondary renewable fuels                                                                                    | MJ             | 0,000                                                                                                              | 0,000 | 0,000  | 0,000   |  |  |
| Uso di materiali secondari                                                                                          | kg             | 1,470                                                                                                              | 0,000 | 0,000  | 1,470   |  |  |
| Uso di combustibili secondari<br>rinnovabili                                                                        | MJ             | 0,000                                                                                                              | 0,000 | 0,000  | 0,000   |  |  |
| Use of secondary non-renewable fuels                                                                                | MJ             | 0,000                                                                                                              | 0,000 | 0,000  | 0,000   |  |  |
| Use of net fresh water                                                                                              | m <sup>3</sup> | 1,600                                                                                                              | 0,035 | 0,181  | 1,816   |  |  |

**Table 5.**Total consumption of resources for  $1 \text{ m}^2$  of Isolimpia with<br/>a thickness of 100 mm and with R = 2,57 [m<sup>2</sup>K/W]





The results of the potential environmental impacts are shown in the following table.

|                                                 |                         | Total consum<br>a thickn | ption of resources<br>less of 20 mm and | sper1m <sup>2</sup> of a<br>with R 0.51m <sup>2</sup> | panel with<br>2K/W |
|-------------------------------------------------|-------------------------|--------------------------|-----------------------------------------|-------------------------------------------------------|--------------------|
| Potential environmental impacts                 | Unit                    | A1                       | A2                                      | A3                                                    | TOTAL              |
| Global Warming (GWP100a)                        | kgCO <sub>2</sub> eq    | 1,026                    | 0,078                                   | 0,067                                                 | 1,171              |
| Ozone layer depletion (ODP)                     | kg CFC 11 eq            | 0,000                    | 0,000                                   | 0,000                                                 | 0,000              |
| Photochemical oxidation                         | kg C₂H₄ eq              | 0,000                    | 0,000                                   | 0,000                                                 | 0,000              |
| Acidification of soil and water                 | kg SO₂ eq               | 0,004                    | 0,002                                   | 0,001                                                 | 0,006              |
| Eutrophication                                  | kg PO4 <sup>3-</sup> eq | 0,002                    | 0,000                                   | 0,000                                                 | 0,002              |
| Abiotic depletion of resources-<br>Elements     | kg Sb eq                | 0,000                    | 0,000                                   | 0,000                                                 | 0,000              |
| Abiotic depletion of resources-<br>Fossil fuels | MJ                      | 19,208                   | 1,090                                   | 1,837                                                 | 22,135             |

Table 6. Potential contribution to the main environmental effects for the production of 1  $m^2$  of Isolimpia with a thickness of 20 mm

|                                                 | Total consumption of resources per 1 m <sup>2</sup> of a panel<br>with a thickness of 50 mm and with R 1,29 m <sup>2</sup> K/W |        |       |       |        |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------|
| Potential environmental<br>impacts              | Unit                                                                                                                           | A1     | A2    | A3    | TOTAL  |
| Global Warming (GWP100a)                        | kgCO <sub>2</sub> eq                                                                                                           | 2,564  | 0,196 | 0,167 | 2,927  |
| Ozone layer depletion (ODP)                     | kg CFC 11 eq                                                                                                                   | 0,000  | 0,000 | 0,000 | 0,000  |
| Photochemical oxidation                         | kg $C_2H_4$ eq                                                                                                                 | 0,001  | 0,000 | 0,000 | 0,001  |
| Acidification of soil and water                 | kg SO <sub>2</sub> eq                                                                                                          | 0,010  | 0,004 | 0,002 | 0,015  |
| Eutrophication                                  | kg PO4 <sup>3-</sup> eq                                                                                                        | 0,004  | 0,000 | 0,000 | 0,005  |
| Abiotic depletion of resources-<br>Elements     | kg Sb eq                                                                                                                       | 0,000  | 0,000 | 0,000 | 0,000  |
| Abiotic depletion of resources-<br>Fossil fuels | MJ                                                                                                                             | 48,020 | 2,725 | 4,593 | 55,338 |

**Table 7.** Potential contribution to the main environmental effects for<br/>the production of 1 m² of Isolimpia with a thickness of 50 mm

|                                                 | Total consu<br>with a thick         | mption of res | ources per 1 i<br>mm and with R | m2 of a panel<br>2,57 m² K/W |         |
|-------------------------------------------------|-------------------------------------|---------------|---------------------------------|------------------------------|---------|
| Potential environmental<br>impacts              | Unit                                | A1            | A2                              | A3                           | TOTAL   |
| Global Warming (GWP100a)                        | kgCO <sub>2</sub> eq                | 5,129         | 0,392                           | 0,333                        | 5,854   |
| Ozone layer depletion (ODP)                     | kg CFC 11 eq                        | 0,000         | 0,000                           | 0,000                        | 0,000   |
| Photochemical oxidation                         | kg C <sub>2</sub> H <sub>4</sub> eq | 0,001         | 0,000                           | 0,000                        | 0,001   |
| Acidification of soil and water                 | kg SO₂ eq                           | 0,020         | 0,008                           | 0,003                        | 0,031   |
| Eutrophication                                  | kg PO <sub>4</sub> <sup>3-</sup> eq | 0,009         | 0,001                           | 0,001                        | 0,011   |
| Abiotic depletion of resources-<br>Elements     | kg Sb eq                            | 0,000         | 0,000                           | 0,000                        | 0,000   |
| Abiotic depletion of resources-<br>Fossil fuels | MJ                                  | 96,040        | 5,450                           | 9,187                        | 110,677 |

**Table 8.** Potential contribution to the main environmental effects for the<br/>production of 1  $m^2$  of Isolimpia with a thickness of 100 mm





|                                | Waste      | Hazardous | Non-hazardous | Radioactive |
|--------------------------------|------------|-----------|---------------|-------------|
|                                | production | waste     | waste         | waste       |
|                                | Unit       | kg        | kg            | kg          |
| Total consumption of           | A1         | 0,000     | 0,020         | 0,000       |
| resources per 1 m2 of a panel  | A2         | 0,000     | 0,000         | 0,000       |
| with a thickness of 20 mm and  | A3         | 0,000     | 0,025         | 0,000       |
| with R 0,51 m2K/W              | TOTAL      | 0,000     | 0,045         | 0,000       |
| Total consumption of           | A1         | 0,000     | 0,050         | 0,000       |
| resources per 1 m2 of a panel  | A2         | 0,000     | 0,000         | 0,000       |
| with a thickness of 50 mm and  | A3         | 0,000     | 0,063         | 0,000       |
| with R 1,29 m <sup>2</sup> K/W | TOTAL      | 0,000     | 0,113         | 0,000       |
| Total consumption of           | A1         | 0,000     | 0,100         | 0,000       |
| resources per 1 m2 of a panel  | A2         | 0,000     | 0,000         | 0,000       |
| with a thickness of 100 mm and | A3         | 0,000     | 0,126         | 0,000       |
| with R 2,57 m <sup>2</sup> K/W | TOTAL      | 0,000     | 0,226         | 0,000       |

Total production of hazardous, non-hazardous and radioactive waste associated with the production of 1  $m^2$  of Isolimpia with a thickness of 20-50-100 mm

## 4 ADDITIONAL INFORMATION

Isolimpia contributes to the credits for the most important systems for assessing the sustainability of the building, including LEED, and the Minimum Environmental Criteria adopted by Decree of the Minister of the Environment for the Protection of the Territory and the Sea. Insulating panels do not contain flame retardants subject to restrictions and do not contain lead catalysts.





## 5 INFORMATION ON THE ORGANIZATION AND CERTIFICATION AGENCY

#### Contacts

OVATTIFICIO OLIMPIA DI ZORZATO ALBERTO E C. Via S.Polo, 115/A 35020 – S. Angelo di Piove (PD) Italia Tel. +39 049 9793801 Fax +39 049 5846669 Eng. Giorgio Michelotto, e-mail giorgio.michelotto@isolimpia.it

#### Further information

This EPD and the PCR of reference are available on the website www.environdec.com. EPD of construction products are not comparable if they do not comply with EN 15804. EPD belonging to the same product category but deriving from different programs may not be comparable. The EPD owner has the sole ownership, liability, and responsibility for the EPD. The LCA study and this EPD were written by Ing.Francesca Intini with the technical scientific support of the University of Basilicata.

| CEN standard EN 15804 served as the core PCR                                   |                                                                                                                         |  |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PCR:                                                                           | PCR 2012:01 Construction products and<br>construction services v. 2.3<br>Sub-PCR-I Thermal insulation products          |  |  |  |  |
| PCR review was conducted by:                                                   | The Technical Committee of the International<br>EPD® System.<br>Chair: Filippo Sessa<br>Contact via info@environdec.com |  |  |  |  |
| Independent verification of the declaration and data, according to ISO 14025:: | <ul><li>□ EPD di processo</li><li>☑ Verifica EPD</li></ul>                                                              |  |  |  |  |
| Third party verifier:                                                          | Adriana Del Borghi<br>delborghi@tetisinstitute.it                                                                       |  |  |  |  |
| Accredited or approved by:                                                     | Technical Commitee of "The International EPD® System"                                                                   |  |  |  |  |

## 6 REFERENCES

- 1. Life Cycle Assessment (LCA) ISOLIMPIA® Isolante termoacustico in poliestere, rev 1.2 July 2019.
- 2. General Programme Instructions for the International EPD® System, ver 3.0. Available at <u>www.environdec.com</u>.
- 3. PCR 2014:13 Insulation Materials, ver. 1.2, 2017-04-11. www.environdec.com
- 4. ISO 14040:2006, Environmental management Life cycle assessment Principles and framework.
- 5. ISO 14025:2006 Type III Environmental labels and declarations Type III environmental declaration Principles and procedures.
- 6. ISO 21930, Environmental declaration of building products.
- 7. EN 15804:2012+A1:2013, Sustainability of construction works Environmental product declarations
- 8. UNI EN 16783 Isolanti Termici Regole quadro per categoria di prodotto (PCR) per prodotti ottenuti in fabbrica e realizzati in sito per la preparazione di dichiarazioni ambientali di prodotto
- 9. Sub-PCR-I Thermal insulation products (EN 16783).