

EPD – Environmental Product Declaration Of In Mould Label

In accordance with ISO 14025 and PCR 2021:01 Version 1.01 "Multi-Purpose Films" of The International EPD® System.

	Linformation	
(-ABAKA	LINTARMASTIAL	

Owner of the EPD:

Stephanos Karydakis S.A.

Location of production site:

Thorikou street

Kalyvia Thorikou, 19010 Greece

Programme:

Programme operator:

EPD registration number:

Publication date:

Validity date:

Geographical scope:

The international EPD® system www.environdec.com

EPD international AB

S-P-05098

2021-11-18

2026-11-17

Global

PROGRAMME INFORMATION

Programme The International EPD® System

EPD International AB

Box 210 60

SE-100 31 Stockholm

Sweden

www.environdec.com info@environdec.com

EPDs within the same product category but from different programmes may not be comparable.

Product category rules (PCR): 2021:01 Version 1.01 "Multi-Purpose Films" of The International EPD® System.

PCR review was conducted by: The Technical Committee of the International EPD® System; Chair of the PCR review: Maurizio Fieschi, <u>info@environdec.com</u>

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

- EPD process certification
- × EPD verification

Procedure for follow-up of data during EPD validity involves third party verifier:

- Yes
- × No

Third party verifier: Koci Vladimir (Individual verifier) "Approved by the International EPD® System" Contact: vlad.koci@vscht.cz

Committed

to sustainability.

The company Stephanos Karydakis S.A. has been operating in Athens, Greece for over 50 years. The company has developed its printing expertise mainly in the areas of labels and advanced advertising and promotional applications. The founder, Stephanos Karydakis, has gained a significant reputation for his high-quality standards and product innovations in the Greek printing market. This quality-oriented mentality kept our company throughout the years at the top of the Greek printing sector and has been recognized with European printing awards.

We gained our first foil printing experience almost 18 years ago, first with promotional and communication applications, such as posters, plastic cards and lenticular films. Not much later we recognized the need for polypropylene labeling applications for the plastic injection and blow-moulding industry. That was the time, at which a new technology has been born, the In-Mould-Labeling – IML.

Intensive research of processes and multiple understanding of the characteristics of the different materials are absolutely essential in order to realize and maintain a high degree of consistency in the production of polypropylene labels. The depth of specialization needed for this production, cannot be compared with simple foil printing applications.

EPD

Environmental Product
Declaration

"A long-term, sustainable and transparent measuring tool for environmental impact".

This know-how has now been transformed to a standard process, performed daily by the company's young and enthusiastic staff of 138 specialized members in the 7.800 sqm privately-owned, state-of-the-art printing plant at the industrial area near the Athens international airport, which has been especially designed for the needs of the production of In-Mould-Labels.

The company is certified with ISO 9001, HACCP and BRC.

Product Information

In-mould labelling is the use of paper or plastic labels during the manufacturing of containers, lids, etc. by blow moulding, injection moulding, or thermoforming processes. The label serves as the integral part of the final product, which is then delivered as predecorated item. IML can provide greater decorating options than other methods.

In mould labels produced by Stephanos Karydakis S.A. are printed on white, clear or metallized PP films with conventional mineral oil free/ cobalt free inks and water-based varnish which are in accordance with the "EuPIA" Guideline on Printing Inks applied to the non-food contact surface of food packaging materials and articles. Furthermore, the inks are especially suitable for printing on polypropylene (PP).

The printing method is conventional offset with oxidative drying and the final product ensures the stable chargeability which is essential for consistent stability of the label positioning during the injection process. **In Mould Label** is classified under code 36920 "Self-adhesive plates, sheets, film, foil, tape, strip and other flat shapes, of plastics" in the United Nations Central Product Classification (CPC) System.

Product Identification		IML
	Average dimensions of label	380,24mm x 131,38mm
	Die cutting tolerance	± 0,3 mm
Product characteristics	Print to cut tolerance	± 1,0 mm
	Base material of label	White, clear or metalized PP Film
	Thickness	40 - 100 μm
	Color tolerance (DE2000 value)	DE < 4
	Average label weight	1,01 gr

LCA information – Life Cycle assessment

Life Cycle Assessment is a method for analysing the environmental impact of a product throughout its life-cycle, from the extraction of raw materials (the cradle) to handling the waste (the grave).

Goal of the study

An LCA study has been conducted in accordance with ISO 14025 and the requirements stated in the General Programme Instructions by The International EPD® System. Goal of the present LCA study has been to calculate environmental impact values for In Mould Label to create this Environmental Product Declaration, to be used for communicating environmental performance to customers.

Scope of the study

The scope of the study is cradle to gate, see Figure 1. All material and resource consumption is tracked back to the point of raw material extraction, mainly by using cradle to-gate data from the Ecoinvent database. The declared unit of the study is 1 square meter of film, in accordance with the Product Category Rules (PCR).

Data collection

The inventory for the LCA study was carried out during 2020. The data for the film processing was provided by Karydakis S.A. staff.

Allocation

Allocation rules has been performed in accordance with the requirements of ISO 14044:2006. Wherever possible, allocation was avoided by dividing the unit process to be allocated into two or more sub-processes and collecting the input and output data related to these sub-processes. Where allocation cannot be avoided, the inputs and outputs of the system were partitioned between its different products or functions in a way that reflects the underlying physical or economic relationships between them.

Cut-off rules

Where there is insufficient data or data gaps for a unit process, the cut-off criteria are 1% of the declared environmental impacts.

Additional information about the LCA study

Time representativeness:

2020

Database(s) and LCA software used:

Ecoinvent 3.7.1
OpenLCA Software

Description of system boundaries:

Cradle-to-gate

System diagram.

The system boundaries of this EPD are decided by the Product Category Rules (PCR) and illustrated by Figure 1.

Upstream

Raw materials

Production of polypropylene film, varnish, ink etc. and packaging materials.

Core

Emissions related to the use of fuels, generation of electricity and fuels, transportation of raw materials from suppliers to plant

Downstream

Distribution of product and packaging End of Life.

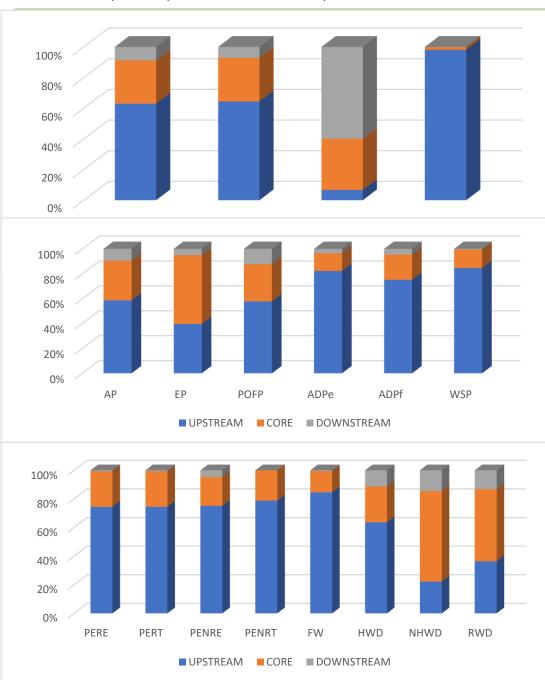
Environmental performance

Potential environmental impact

Parameter		Unit	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Fossil		kg CO₂ eq	1,33E-01	5,88E-02	1,49E-02	2,07E-01
Global warming	Biogenic	kg CO₂ eq	4,71E-04	2,35E-03	4,23E-03	7,04E-03
potential (GWP)	Land use and	kg CO₂ eq	2,90E-03	5,52E-05	3,98E-06	2,96E-03
potential (GVVF)	land transformation	kg CO ₂ eq	2,901-03	J,JZL-03	3,90L-00	2,30L-03
	TOTAL	kg CO₂ eq	1,36E-01	6,12E-02	1,91E-02	2,17E-01
Acidification potential (AP)		kg SO₂ eq	5,69E-04	3,10E-04	9,28E-05	9,72E-04
Eutrophication potential (EP)		kg PO ₄ -3 eq	1,80E-04	2,52E-04	2,30E-05	4,55E-04
Formation potential of tropospheric ozone (POFP)		kg NMVOC eq	5,27E-04	2,73E-04	1,13E-04	9,13E-04
Abiotic depletion potential – Elements		kg Sb eq	8,64E-07	1,49E-07	3,76E-08	1,05E-06
Abiotic depletion potential – Fossil resources		MJ	3,57E+00	9,62E-01	2,21E-01	4,75E+00
Water scarcity potential		m³ eq	1,08E-01	1,90E-02	8,24E-04	1,28E-01

Use of resources

Paramet	er	Unit	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Primary energy	Use as energy carrier	MJ	2,45E-01	8,17E-02	2,32E-03	3,29E-01
resources – Renewable	Used as raw materials	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	TOTAL	MJ	2,45E-01	8,17E-02	2,32E-03	3,29E-01
Primary energy	Use as energy carrier	MJ	3,58E+00	9,62E-01	2,21E-01	4,76E+00
resources – Nonrenewable	Used as raw materials	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	TOTAL	MJ	3,58E+00	9,62E-01	0,00E+00	4,54E+00
Use of secondar	Use of secondary material		0,00E+00	0,00E+00	0,00E+00	0,00E+00
Use of renewable secondary fuels		MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Use of non-renewable secondary fuels		MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Fresh water		m³ eq	2,52E-03	4,41E-04	1,92E-05	2,98E-03


Waste production

Parameter	Unit	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Hazardous waste disposed	Kg	3,19E-06	1,26E-06	5,68E-07	5,02E-06
Non-hazardous waste disposed	Kg	1,44E-02	4,09E-02	9,42E-03	6,47E-02
Radioactive waste disposed	Kg	4,23E-06	5,88E-06	1,53E-06	1,16E-05

Output flows

Parameter	Unit	UPSTREAM	CORE	DOWNSTREAM	TOTAL
Components for reuse	Kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Material for recycling	Kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for energy recovery	Kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Exported energy, electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Exported energy, thermal	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00

As it is presented in Figures, the upstream activities (raw materials supply) are the ones which contribute the most to almost all impact categories for the production of IML. For Global Warming potential-luluc, Global Warming potential-fossil, Global Warming potential (total) (GWP), upstream activities contribution ranges from 98% to 63%, while in core activities (i.e., the transport of raw materials to production site and the cultivation of the vegetable), the corresponding contribution does not exceed 28%. For Acidification potential (AP), Abiotic depletion potential for non-fossil resources (ADPe), Abiotic depletion potential for fossil resources (ADPf), Use of non-renewable primary energy excluding resources used as raw materials (PENRE), Use of net fresh water (FW), the upstream activities contribution ranges from 59% to 85%, while the corresponding contribution of those indicators in core stage ranges from 14% to 32%. The impact category Non-hazardous waste disposed (NHWD), is contributing the most to the core activities (i.e., the transport of raw materials to production site and the manufacturing process of the product).

References

General Programme Instructions of the International EPD® System. Version 3.01, 2019-09-18

PCR 2019:13 v.1.1 Packaging. EPD System. Date 2020-12-17. Valid until 2023-11-8

ISO 14020:2000 Environmental labels and declarations — General principles

ISO 14025:2006 Environmental labels and declarations - Type III environmental declarations — Principles and procedures

ISO 14040:2006 Environmental management - Life cycle assessment-Principles and framework

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

Contact information

EPD owner:	Stephanos Karydakis S.A. Thorikou street Kalyvia Thorikou, 19010 Greece Contact person: Apostolos Tsetis Apostolos.Tsetis@karydakis.gr https://www.karydakis.gr/
LCA author:	Envirometrics Ltd. Karea 20, Athens Greece info@envirometrics.gr
Programme operator:	EPD International AB info@environdec.com