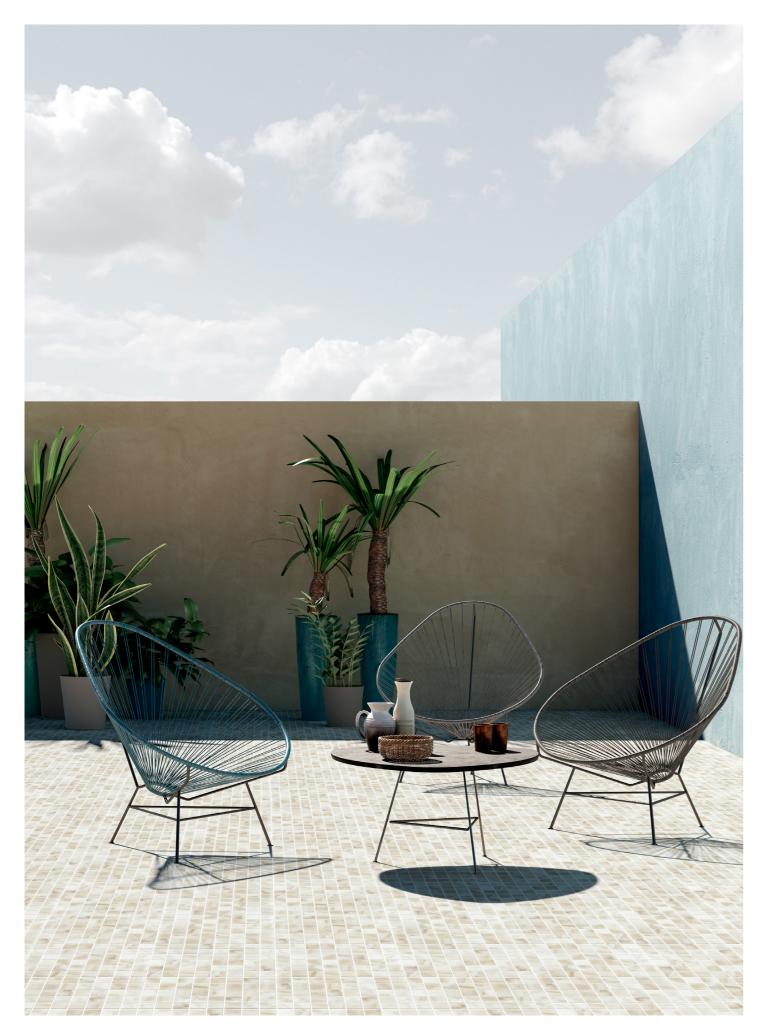


INTERNATIONAL EPD® SYSTEM

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH ISO 14025 AND EN 15804 FOR:

GLASS MOSAIC TILE


FROM VIDREPUR.S.A

Programme:	The International EPD® System, www.environdec.com
Programme operator:	EPD International AB
EPD registration number:	S-P-03607
Publication date:	2021-09-14
Valid until:	2026-09-13

WWW.VIDREPUR.COM

VIDREPUR

Programme	The International EPD® S					
	EPD International AB					
	Box 210 60					
	SE-100 31 Stockholm					
	Sweden					
	www.environdec.com					
	info@environdec.com					
Product category rules	(PCR): CEN standard EN 158					
Construction products	and construction services, 20					
	ated by The Technical Comm					
	cted by: The Technical Comm Contact via "mailto:info@env					
Independent third-part	y verification of the declarati					
EPD process certification	ation 🛛 🖾 EPD verificati					
Third party verifier: Mai info@marcelgomez.con	rcel Gómez Ferrer, Marcel Gó					
inio@inarceigomez.com						
Approved by: The Inter	national EPD® System					
Procedure for follow-up	o of data during EPD validity					
🗆 Yes 🛛 No						
The EPD owner has the	sole ownership, liability, and					
	product category but from di					
	tion products may not be co					
15804.						
EPD developer: SGS TE	CNOS S.A.U					
	CC CC					

System

5804 served as the core PCR. 2012:01, version 2.33 valid until 2021-12-31

mittee of the International EPD®System. environdec.com" info@environdec.com

ation and data, according to ISO 14025:2006: ation

Sómez Consultoría Ambiental,

ty involves third party verifier:

nd responsibility for the EPD. different programmes may not be compacomparable if they do not comply with EN

COMPANY INFORMATION

OWNER OF THE EPD: VIDREPUR S.A

PRODUCT INFORMATION

VIDREPUR S.A

4

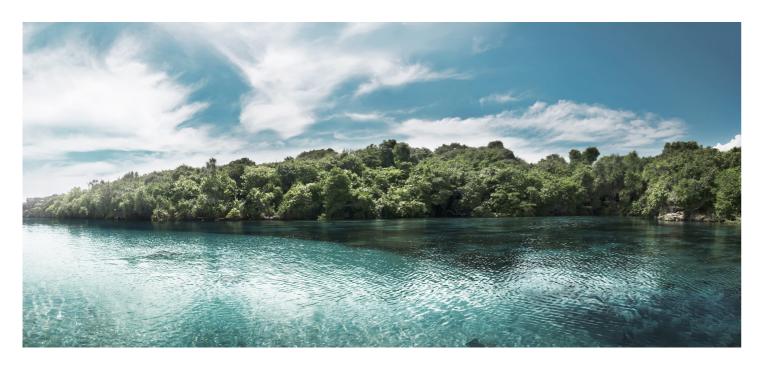
DESCRIPTION OF THE ORGANISATION:

Tradition and art brought together for over 30 years in this major company, a leading manufacturer and distributor of glass mosaic tiles. Thanks to our expert hands, cutting-edge designs and innovation, VI-DREPUR is able to provide collections that allow you to decorate spaces with added personality.

Since 1988, VIDREPUR has been one of the world's leading manufacturers of glass tiling. With its main production plant in Castellón, Spain, and offices in the United States, Russia and Mexico. The company has over 4,000 distributors and a strong presence in the global market. Our products are fully manufactured in our Spanish factory and they are made of 99% recycled material.

Since our beginning and as a fundamental value is the care and respect for the environment in all its aspects. Several certificates and guarantees of this added value, support our glass mosaic product and ensures quality and social responsibility.

MORE INFORMATION:


https://vidrepur.com/en

PRODUCT-RELATED OR MANAGEMENT SYSTEM-RELATED CERTIFICATIONS:

ISO 9001 and 14001 certificates. Recycled content certified (SCS Recycled Content Standard V7-0) for a minimun 99% pre-consumer recycled glass content.

NAME AND LOCATION OF PRODUCTION SITE:

The production site is located in Carrer del Comerç, 5 12550 in Almassora (Castellón, Spain).

VIDREPUR

PRODUCT NAME:

According to the product classification system UN-CPC, the code for the product manufactured by VI-DREPUR is: 37117 "Paving blocks, bricks, tiles and other articles of pressed or moulded glass, of a kind used for building or construction purposes; leaded lights and the like; multicellular or foam glass in blocks, plates or similar forms".

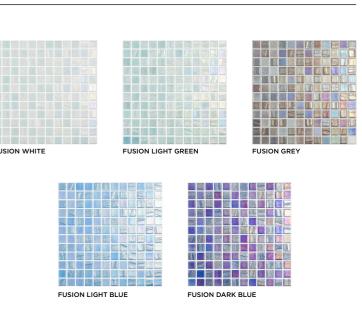
PRODUCT DESCRIPTION:

The environmental product declaration describes the environmental information based on a life cycle assessment of glass mosaic tiles manufactured by VIDREPUR S.A in the production site located in Almassora (Castellón, Spain) and distributed around the world.

Glass mosaic tile is a construction product used to cover walls and floors. It is composed of flat glass melted at high temperature that allow recreate spectacular effects and colours.

The mosaic glass is extremely resistant to humidity, changes in the temperature and chemical products

The product is supplied in 2,5 x 2,5 sheets with the pieces stuck on adhesive paper, on fibreglass and polyester or with a dot mesh-backing. Because they are non-fading and easy to clean and install, they are the perfect decorative tiles to cover swimming pools, façades, pillars, interiors, bathrooms, etc. General specifications of VIDREPUR glass mosaic tiles:


As commented before, the product can be supplied stuck in different materials. In this environmental product declaration has been assessed the impacts of the glass mosaic supplied in those different materials:

- Pieces stuck on adhesive paper.
- Pieces stuck on fibreglass and polyester.
- Pieces stuck with a dot mesh-backing: dots of PVC or PUR.

GEOGRAPHICAL SCOPE:

International

WATER ABSORPTION	0%	
FROST RESISTANCE	NOT SUSCEPTIBLE TO FROST DAMAGE	
THERMAL SHOCK RESISTANCE	NO CHANGE	FU
CHEMICAL RESISTANCE	ACIDS AND ALKALIS	
CRAZING RESISTANT	CRAZING RESISTANT	
EXPANSION RESISTANCE	NO CHANGE	
USEFUL LIFE	UNLIMITED	

LCA INFORMATION

SYSTEM BOUNDARY

6

DECLARED UNIT:

1 m² covering of a surface with glass mosaic tile.

REFERENCE SERVICE LIFE:

50 years

TIME REPRESENTATIVENESS:

The LCA is based on 2019 production data for Vidrepur Manufacturing site in Almassora (Castellón).

DATABASE(S) AND LCA SOFTWARE USED:

The database was Ecoinvent 3.6 and LCA software SIMAPRO 9.0.0.49.

DESCRIPTION OF SYSTEM BOUNDARIES:

Cradle to gate with options (A1-A3 and A4-A5 and C2-C4).

EXCLUDED LIFECYCLE STAGES:

The use stage and module D are excluded by the LCA study.

STANDARDS:

The LCA is performed in accordance with the requirements of the following standards:

- ISO 14040:2006
- ISO 14044:2006
- EN 15804:2012+A1:2013
- PCR for Construction Products and Construction Services 2012:01

PRO	DUCT S	TAGE	CONS TRUC PROC STAG	TION ESS	USE STAGE				END OF LIFE STAGE			GE	RESOURCE RECOVERY STAGE			
RAW MATERIAL SUPPLY	TRANSPORT	MANUFACTURING	TRANSPORT	CONSTRUCTION INSTALLATION	USE	MAINTENANCE	REPAIR	REPLACEMEN	REFURBISHMENT	OPERATIONAL ENERGY USE	OPERATIONAL WATER USE	DE-CONSTRUCTION DEMOLITION	TRANSPORT	WASTE PROCESSING	DISPOSAL	REUSE-RECOVERY-RECYCLING-P OTENTIAL
A1	A2	A3	A4	A5	B1	В2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
x	х	х	х	х	NR	NR	NR	NR	NR	NR	NR	NR	х	х	х	MND

X: Included in LCA NR: Non relevant MND: Module not declared

MANUFACTURING	
A1 RAW MATERIALS PRODUCTION	
A2 RAW MATERIALS TRANSPORT	
A3 GLASS MOSAIC MANUFACTURING	

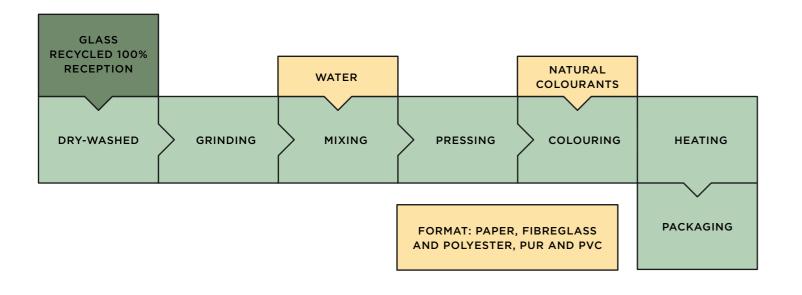
RAW MATERIALS SUPPLY AND TRANSPORT (A1 AND A2):

The main material is pre-consumer 100% glass recy- Both the preparation of the raw materials and the cled supplied by a waste manager from Spain. For manufacturing of the tiles are made exclusively in the colour, a thin layer of natural colorant pigments Almazora (Castellón). based on mineral oxides is applied and additives After the final quality control, the products are classuch as suspending agents, deflocculants or bin-sified according to the type of support required and ders. subsequently packed in a primary cardboard packaging and on wooden pallets. Later they are covered All the raw materials considered come from Spain. with film.

Glass recycled is transported in bulk and the other raw materials are packaged.

VIDREPUR

VIDREPUR


MANUFACTURING (A3):

7

SYSTEM BOUNDARY

SYSTEM BOUNDARY

DIAGRAM OF MANUFACTURING PROCESS:

TRANSPORT FROM THE GATE TO THE SITE (A4)

considered. For transcontinental transport, an ave- cation on the construction site. There is no energy rage transoceanic freighter was considered. 41,1% of the product is distributed in Spain, 30,7% in Europe and 28,1% to the rest of the world.

SCENARIO INFORMATION	VALUE
VEHICLE TYPE	ROAD LORRY 16-32 METRIC TON, EURO 6 SEA TRANSOCEANIC SHIP
DISTANCE	800 KM NATIONAL DISTRIBUTION 6.000 KM EUROPE DISTRIBUTION 8.700 KM REST OF THE WORLD DISTRIBUTION
BULK DENSITY OF TRANSPORTED PRODUCTS	2460 KG/M3

INSTALLATION INTO THE BUILDING (A5)

For road transport a 24 t truck, EURO VI class, was This stage includes the Vidrepur glass mosaic appliuse during installation, manpower is sufficient. For the installation, cement based adhesive mortar is used according to the product datasheet.

> Packaging waste is handled separately. For the waste treatment rate applied. It has been considered the rates published at Eurostat for Spain. The Spanish rates were selected for being worse than the European.

SCENARIO INFORMATION	VALUE (PER DECLARED UNIT)
ANCILLARY MATERIALS FOR INSTALLATION	0,7 KG/M2 CEMENT BASED AD- HESIVE MORTAR
WATER USE	0,00021 M3 (INCLUDED IN THE MORTAR)
OTHER RESOURCE USE	NOT NECESSARY
ENERGY USE	NOT NECESSARY
WASTE STREAMS PRO- DUCED	WOOD/ FIBREBOARD: 0,173 KG PLASTIC: 0,00995 KG CARDBOARD: 0,0688 KG

VIDREPUR

DECONSTRUCTION AND DEMOLITION (C1)

There is no energy use during uninstallation, The LCA study has been carried out by SGS Tecnos SAU with an internal critical review according manpower and some tools are sufficient. to ISO 14040 and 14044.

TRANSPORT (C2)

8

Product wastes are transported in a truck according to Euro VI standards, over a distance of 50 km to According to the PCR, the criteria applied to the the destination. In order to estimate the 50 km be- glass mosaic product has been the input and output tween the demolished building and the nearest con- allocation of the system based in physical propertrolled landfill. Is has been considered the back so ties (mass). the distance to landfill is 100 km.

As cut-off rule, it has been included the weight/vo-For the recycling plant, it has been considered also lume of all materials used during the manufacturing in such as way as, at least, the 99% of weight of 50 km. product unit is included.

WASTE PROCESSING FOR REUSE, RECOVERY

All significant parameters shall be included. Accorthan 1% of the total primary energy usage of the associated unit process may be omitted. However, the exceed 5% per module.

AND/OR RECYCLING (C3) It has been used the deconstruction and demolition ding to EN 15804, mass flows under 1% of the total rates published by Eurostat. https://ec.europa.eu/ mass input; and/or energy flows representing less eurostat/data/database 44% of the product is sent to reuse, recovery and total amount of energy and mass omitted must not recycling.

FINAL DISPOSAL (C4)

56% of the product is sent to controlled landfill.

SCENARIO INFORMATION	UNIT
	Kg/DU collected separately: 0%
COLLECTION PROCESS	Kg/DU collected with mixed construction waste: 100% of the product
	Kg/DU for re-use: 0%
RECOVERY SYSTEM	Kg/DU for recycling: 37%
	Kg/DU for energy recovery: 7%
DISPOSAL	Kg/DU for final disposal: 0%
DISPOSAL	Kg/DU to landfill: 56%
WASTE TRANSPORTATION (DISTANCE)	50 km for the recycling plant 100 km to landfill. The return trip is included in the system

*DU: Declared unit

VIDREPUR

MORE INFORMATION:

For contact: silvia.martinezmohedo@sgs.com

The impact method used are:

- CML-IA Baseline v.3.05
- Cumulative energy demand v. 1.11 for energy resources
- EDIP 2003 v. 1.07 for waste production
- ReCiPe 2016 Midpoint (H) V1.02

DATA QUALITY

Primary data refer to 2019 and have been collected at VIDREPUR's plant located in Castellón (Spain), whereas selected generic data have been retrieved from Ecoinvent 3.2 and using the most updated datasets and, as far as possible, those representative for at least 5 years into the future.

The energy-related data refer to the electricity origin declared in the electricity origin certificate supplied by the energy distributor. This certificate declares that the electricity origin is 100% renewable. Whereas, to produce raw materials an European energy mix has been accounted for.

CONTENT DECLARATION

10

CONTENT DECLARATION

CONTENT DECLARATION

PRODUCT			
MATERIALS / CHEMICAL SUBSTANCES	KG/M ²	%	ENVIRONMENTAL/HAZARDOUS PROPERTIES
GLASS RECYCLED	8,9	99	
NATURAL COLOURANTS	0,03	0,3	
OTHER ANCILLARY MATERIALS	0,07	0,7	01-211952948-35-xxxx
TOTAL	9	100	

CONTENT DECLARATION

GLASS MOSAIC TILE SHEETS									
MATERIALS / CHEMICAL SUBSTANCES	WEIGHT. KG	%	ENVIRONMENTAL / HAZARDOUS PROPERTIES						
PIECES STUCK ON ADHESIVE PAPER									
KRAFT PAPER	0,09	1,1%							
PIECES STUCK ON FIBREGLASS AND POLY	PIECES STUCK ON FIBREGLASS AND POLYESTER (MESH)								
KRAFT PAPER	0,14	1,6%							
PARAFFIN	0,08	0,9%							
ADHESIVE	0,05	0,5%							
PIECES STUCK WITH A DOT MESH-BACKIN	G: DOTS OF PVC								
POLYVINYL CHLORIDE	0,18	2%							
PIECES STUCK WITH A DOT MESH-BACKIN	PIECES STUCK WITH A DOT MESH-BACKING: DOTS OF PUR								
POLYURETHANE	0,14	1,6%							

CONTENT DECLARATION

PACKAGING								
PACKAGING MATERIALS	WEIGHT, KG	WEIGHT-% (VERSUS THE PRODUCT)						
CORRUGATED BOARD BOX	0,023	0,25%						
FILM	0,003	0,04%						
EUR- FLAT PALLET	0,015	0,17%						
HARD FIBREBOARD	3,69E-05	0,000041%						
TOTAL	0,042	0,46%						

RECYCLED MATERIAL

Provenience of recycled materials (pre-consumer or post-consumer) in the product: The main component of Vidrepur glass mosaic is 100% pre-consumer recycled glass. It is certified by SCS Global Services conforms to SCS Recycled Content Standard V7-0.

ENVIRONMENTAL PERFORMANCE

The environmental impacts are referred to 1 m2 of a surface covered with VIDREPUR glass mosaic tile (unit declared).

GLASS MOSAIC TILE I	N ADHESIVE PAPER							
PARAMETER		UNIT	TOTAL A1-A3	A4	A5	C2	C3	C4
	FOSSIL	kg CO ₂ eq.	1,38E+00	2,76E-01	9,10E-01	1,11E-01	8,28E-03	2,70E-02
	BIOGENIC	kg CO ₂ eq.	3,00E-01	1,67E-03	9,10E-02	6,71E-04	5,21E-04	9,43E-04
GLOBAL WARMING POTENTIAL (GWP)	LAND USE AND LAND TRANSFORMATION	kg CO ₂ eq.	4,56E-03	9,39E-05	3,60E-04	3,71E-05	7,1E-06	1,24E-06
	TOTAL	kg CO ₂ eq.	1,68E+00	7,80E-01	9,70E-01	1,11E-01	8,28E-03	2,70E-02
	DEPLETION POTENTIAL OF THE STRATOSPHERIC OZONE LAYER (ODP)		1,85E-07	4,97E-08	8,12E-08	2,01E-08	1,85E-09	8,92E-09
ACIDIFICATION POTEN	ITIAL (AP)	kg SO ₂ eq.	4,18E-03	8,33E-04	5,85E-03	2,67E-04	3,70E-05	1,99E-04
EUTROPHICATION POTENTIAL (EP)		kg PO ₄ ³⁻ eq.	1,55E-03	1,56E-04	1,68E-03	5,66E-05	1,54E-05	4,26E-05
FORMATION POTENTIA	AL OF TROPOSPHERIC	kg C ₂ H ₄ eq.	5,24E-04	4,66E-05	4,84E-04	1,68E-05	1,44E-06	9,72E-06
ABIOTIC DEPLETION POTENTIAL - ELEMENTS		kg Sb eq.	3,83E-06	7,34E-07	4,73E-06	3,05E-07	2,47E-08	3,12E-08
ABIOTIC DEPLETION POTENTIAL - FOSSIL RESOURCES		MJ, net calorific value	1,94E+01	4,08E-00	1,26E+01	1,65E+01	1,13E-01	7,56E-01
WATER SCARCITY POT	FENTIAL	m³ eq.	4,77E-01	2,56E-02	7,65E-02	1,04E-02	1,88E-03	3,65E-02

CONTENT DECLARATION

12

CONTENT DECLARATION

GLASS MOSAIC TILE IN ADHESIVE PAPER IN POLYESTER MASH									
PARAMETER		UNIT	TOTAL A1-A3	A4	A5	C2	C3	C4	
	FOSSIL	kg CO ₂ eq.	1,79E+00	2,76E-01	9,10E-01	1,11E-01	8,28E-03	2,70E-02	
	BIOGENIC	kg CO ₂ eq.	3,10E-01	1,67E-03	9,10E-02	6,71E-04	5,21E-04	9,43E-04	
GLOBAL WARMING POTENTIAL (GWP)	LAND USE AND LAND TRANSFORMATION	kg CO ₂ eq.	4,72E-03	9,39E-05	3,60E-04	3,71E-05	7,1E-06	1,24E-06	
TOTAL		kg CO ₂ eq.	2,09E+00	7,80E-01	9,70E-01	1,11E-01	8,28E-03	2,70E-02	
DEPLETION POTENTIAL OF THE STRATOSPHERIC OZONE LAYER (ODP)		kg CFC 11 eq.	2,19E-07	4,97E-08	8,12E-08	2,01E-08	1,85E-09	8,92E-09	
ACIDIFICATION POTEN	ITIAL (AP)	kg SO ₂ eq.	5,96E-03	8,33E-04	5,85E-03	2,67E-04	3,70E-05	1,99E-04	
EUTROPHICATION POT	ENTIAL (EP)	kg PO ₄ ³⁻ eq.	1,90E-03	1,56E-04	1,68E-03	5,66E-05	1,54E-05	4,26E-05	
FORMATION POTENTIA OZONE (POCP)	AL OF TROPOSPHERIC	kg C_2H_4 eq.	6,86E-04	4,66E-05	4,84E-04	1,68E-05	1,44E-06	9,72E-06	
ABIOTIC DEPLETION POTENTIAL - ELEMENTS		kg Sb eq.	5,18E-06	7,34E-07	4,73E-06	3,05E-07	2,47E-08	3,12E-08	
ABIOTIC DEPLETION POTENTIAL - FOSSIL RESOURCES		MJ, net calorific value	3,61E+01	4,08E-00	1,26E+01	1,65E+01	1,13E-01	7,56E-01	
WATER SCARCITY POT	ENTIAL	m³ eq.	6,87E-01	2,56E-02	7,65E-02	1,04E-02	1,88E-03	3,65E-02	

GLASS MOSAIC TILE IN DOTS OF PVC										
PARAMETER		UNIT	TOTAL A1-A3	A4	A5	C2	C3	C4		
	FOSSIL	kg CO ₂ eq.	1,68E+00	2,76E-01	9,10E-01	1,11E-01	8,28E-03	2,70E-02		
	BIOGENIC	kg CO ₂ eq.	3,10E-01	1,67E-03	9,10E-02	6,71E-04	5,21E-04	9,43E-04		
GLOBAL WARMING POTENTIAL (GWP)	LAND USE AND LAND TRANSFORMATION	kg CO ₂ eq.	4,60E-03	9,39E-05	3,60E-04	3,71E-05	7,1E-06	1,24E-06		
TOTAL		kg CO ₂ eq.	1,99E+00	7,80E-01	9,70E-01	1,11E-01	8,28E-03	2,70E-02		
DEPLETION POTENTIAL OF THE STRATOSPHERIC OZONE LAYER (ODP)		kg CFC 11 eq.	1,83E-07	4,97E-08	8,12E-08	2,01E-08	1,85E-09	8,92E-09		
ACIDIFICATION POTEN	ACIDIFICATION POTENTIAL (AP)		5,47E-03	8,33E-04	5,85E-03	2,67E-04	3,70E-05	1,99E-04		
EUTROPHICATION PO	TENTIAL (EP)	kg PO ₄ ³⁻ eq.	1,74E-03	1,56E-04	1,68E-03	5,66E-05	1,54E-05	4,26E-05		
FORMATION POTENTIA	AL OF TROPOSPHERIC	kg C ₂ H ₄ eq.	5,78E-04	4,66E-05	4,84E-04	1,68E-05	1,44E-06	9,72E-06		
ABIOTIC DEPLETION POTENTIAL - ELEMENTS		kg Sb eq.	4,40E-06	7,34E-07	4,73E-06	3,05E-07	2,47E-08	3,12E-08		
ABIOTIC DEPLETION POTENTIAL - FOSSIL RESOURCES		MJ, net calorific value	3,22E+01	4,08E-00	1,26E+01	1,65E+01	1,13E-01	7,56E-01		
WATER SCARCITY PO	TENTIAL	m³ eq.	1,52E+00	2,56E-02	7,65E-02	1,04E-02	1,88E-03	3,65E-02		

GLASS MOSAIC TILE IN DOTS OF PUR										
PARAMETER		UNIT	TOTAL A1-A3	A4	A5	C2	C3	C4		
	FOSSIL	kg CO ₂ eq.	2,33E+00	2,76E-01	9,10E-01	1,11E-01	8,28E-03	2,70E-02		
	BIOGENIC	kg CO ₂ eq.	3,30E-01	1,67E-03	9,10E-02	6,71E-04	5,21E-04	9,43E-04		
GLOBAL WARMING POTENTIAL (GWP)	LAND USE AND LAND TRANSFORMATION	kg CO ₂ eq.	4,46E-03	9,39E-05	3,60E-04	3,71E-05	7,1E-06	1,24E-06		
TOTAL		kg CO ₂ eq.	2,66E+00	7,80E-01	9,70E-01	1,11E-01	8,28E-03	2,70E-02		
DEPLETION POTENTIAL OF THE STRATOSPHERIC OZONE LAYER (ODP)		kg CFC 11 eq.	1,85E-07	4,97E-08	8,12E-08	2,01E-08	1,85E-09	8,92E-09		
ACIDIFICATION POTEN	ITIAL (AP)	kg SO ₂ eq.	8,71E-03	8,33E-04	5,85E-03	2,67E-04	3,70E-05	1,99E-04		
EUTROPHICATION POT	TENTIAL (EP)	kg PO ₄ ³⁻ eq.	2,46E-03	1,56E-04	1,68E-03	5,66E-05	1,54E-05	4,26E-05		
FORMATION POTENTIA OZONE (POCP)	AL OF TROPOSPHERIC	kg C_2H_4 eq.	7,24E-04	4,66E-05	4,84E-04	1,68E-05	1,44E-06	9,72E-06		
ABIOTIC DEPLETION POTENTIAL - ELEMENTS		kg Sb eq.	5,34E-06	7,34E-07	4,73E-06	3,05E-07	2,47E-08	3,12E-08		
ABIOTIC DEPLETION POTENTIAL - FOSSIL RESOURCES		MJ, net calorific value	4,07E+01	4,08E-00	1,26E+01	1,65E+01	1,13E-01	7,56E-01		
WATER SCARCITY POT	ENTIAL	m³ eq.	1,44E+00	2,56E-02	7,65E-02	1,04E-02	1,88E-03	3,65E-02		

14

ENVIRONMENTAL PERFORMANCE

USE OF RESOURCES

The impacts showed below are referred to cover 1 m2 of surface with the glass mosaic tile in adhesive paper. The module A4 to C4 are the same for the other formats (polyester mash, dots of PVC and dots PUR). Below this table, the impacts for modules A1-A3 are showed for the other formats in order to see the difference depending of the format used to the product.

PARAMETER		UNIT	TOTAL A1-A3	A4	A5	C2	C3	C4
	USE AS ENERGY CARRIER	MJ, net calorific value	1,45E+01	5,57E-02	9,10E-01	1,11E-01	8,28E-03	2,70E-02
PRIMARY ENERGY RESOURCES - RENEWABLE	USED AS RAW MATERIALS	MJ, net calorific value	0	0	0	0	0	0
	TOTAL	MJ, net calorific value	1,45E+01	5,57E-02	0	2,19E-02	3,59E-02	1,98E-02
USE AS ENERGY CARRIER		MJ, net calorific value	2,27E+01	4,42E-00	9,14E+00	1,78E+00	2,06E-01	8,15E-01
PRIMARY ENERGY RESOURCES - NON-RENEWABLE	USED AS RAW MATERIALS	MJ, net calorific value	0	0	0	0	0	0
	TOTAL	MJ, net calorific value	2,27E+01	4,42E-00	9,14E+00	1,78E+00	2,06E-01	8,15E-01
SECONDARY MATERIA	L	MJ, net calorific value	8,91E+00	0	0	0	0	0
RENEWABLE SECONDARY FUELS		MJ, net calorific value	0	0	0	0	0	0
NON-RENEWABLE SECONDARY FUELS		MJ, net calorific value	0	0	0	0	0	0
NET USE OF FRESH WATER		MJ, net calorific value	1,20E-02	7,75E-04	2,34E-03	3,12E-04	1,51E-04	8,51E-04

VIDREPUR

POTENTIAL ENVIRONMENTAL IMPACT								
PARAMETER		UNIT	POLYESTER MASH	DOTS PVC	DOTS PUR			
		UNIT	TOTAL A1-A3	TOTAL A1-A3	TOTAL A1-A3			
	USE AS ENERGY CARRIER	MJ, net calorific value	1,48E+01	1,47E+01	1,52E+01			
PRIMARY ENERGY RESOURCES - RENEWABLE	USED AS RAW MATERIALS	MJ, net calorific value	0	0	0			
	TOTAL	MJ, net calorific value	1,48E+01	1,47E+01	1,52E+01			
	USE AS ENERGY CARRIER	MJ, net calorific value	4,13E+01	4,42E+00	4,82E+01			
PRIMARY ENERGY RESOURCES - RENEWABLE	USED AS RAW MATERIALS	MJ, net calorific value	0	0	0			
	TOTAL	MJ, net calorific value	4,13E+01	4,42E+00	4,82E+01			
SECONDARY MATERIAL	SECONDARY MATERIAL		8,91E+00	8,91E+00	8,91E+00			
RENEWABLE SECONDARY FUELS		MJ, net calorific value	0	0	0			
NON-RENEWABLE SECONDARY FUELS		MJ, net calorific value	0	0	0			
NET USE OF FRESH WATER		m3	1,76E-02	4,06E-02	3,55E-02			

ENVIRONMENTAL PERFORMANCE

WASTE PRODUCTION									
PARAMETER	UNIT	TOTAL A1-A3	A4	A5	C2	C3	C4		
HAZARDOUS WASTE DISPOSED	kg	3,44E-05	2,48E-06	2,07E-04	1,00E-06	1,54E-07	5,37E-07		
NON-HAZARDOUS WASTE DISPOSED	kg	1,11E+00	1,94E-01	2,68E-01	8,08E-02	5,35E-03	5,04E+00		
RADIATIVE WASTE DISPOSED	kg	8,36E-05	2,80E-05	0,00E+00	1,13E-05	1,88E-06	5,02E-06		

WASTE PRODUCTION									
PARAMETER	UNIT	POLYESTER MASH	DOTS PVC	DOTS PUR					
		TOTAL A1-A3	TOTAL A1-A3	TOTAL A1-A3					
HAZARDOUS WASTE DISPOSED	kg	3,86E-05	3,58E-05	3,67E-05					
NON-HAZARDOUS WASTE DISPOSED	kg	1,21E+00	1,12E+00	1,14E+00					
RADIATIVE WASTE DISPOSED	kg	1,05E-04	8,51E-05	8,65E-05					

OUTPUT FLOWS									
PARAMETER	UNIT	TOTAL A1-A3	A4	A5	C2	C3	C4		
COMPONENTS FOR REUSE	kg	0	0	0	0	0	0		
MATERIAL FOR RECYCLING	kg	2,15E-04	3,38E-05	1,32E-01	0,00E+00	3,34E+00	2,37E-06		
MATERIALS FOR ENERGY RECOVERY	kg	0	0	0	0	0	0		
EXPORTED ENERGY, ELECTRICITY	kg	0	0	0	0	0	0		
EXPORTED ENERGY, THERMAL	kg	0	0	0	0	0	0		

WASTE PRODUCTION									
PARAMETER	UNIT	POLYESTER MASH	DOTS PVC	DOTS PUR					
		TOTAL A1-A3	TOTAL A1-A3	TOTAL A1-A3					
COMPONENTS FOR REUSE	kg	0	0	0					
MATERIAL FOR RECYCLING	kg	2,76E-04	2,52E-04	2,99E-04					
MATERIALS FOR ENERGY RECOVERY	kg	0	0	0					
EXPORTED ENERGY, ELECTRICITY		0	0	0					
EXPORTED ENERGY, THERMAL		0	0	0					

VIDREPUR

ADDITIONAL INFORMATION

NO FURTHER INFORMATION IS PROVIDED.

REFERENCES

16

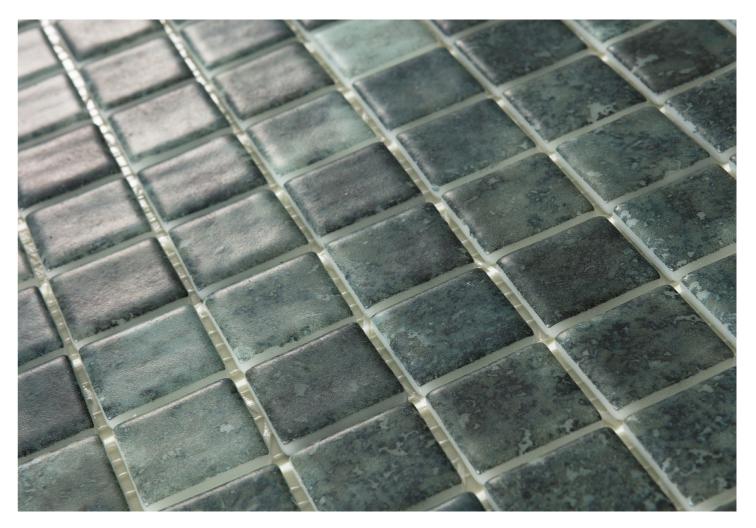
General Programme Instructions of the International EPD® System. Version 3.0.

EN 15804:2012+A1:2013

Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products.

ISO 14040. (2006)

Environmental Management - Life cycle assessment - Principles and framework (EN ISO 14040:2006).


ISO 14044

Environmental Management - Life cycle assessment - Requirements and guidelines (EN ISO 14044:2006).

ISO 14025:2010

Environmental labels and declarations-Type III Environmental Declarations-Principles and procedures.

Treatment rate of construction and demolition waste (2016) http://appsso.eurostat.ec.europa.eu/nui/show.do?lang=en&dataset=env_wasgen

INTERNATIONAL EPD® SYSTEM

WWW.ENVIRONDEC.COM