CPC CODE

34240 Sodium Chlorate

REGISTRATION DATE

Issue date: 2002-09-05 Revision date: 2018-03-02

Valid until: 2021-03-01

REGISTRATION NUMBER

S-P-00030

Sodium Chlorate NaClO₃

Environmental Product Declaration

Nouryon

Nouryon

1. The company

Nouryon

Nouryon is a global specialty chemicals leader, providing essential chemicals to manufacturing of everyday products such as paper, building materials, food, pharmaceuticals, and personal care items.

One product segment is pulp bleaching technologies, in which Nouryon is a leading global force and the largest producer of sodium chlorate worldwide and a regional supplier of hydrogen peroxide. The company designs, supplies and operates plants and equipment for the processing of bleaching chemicals.

With it's about 10,000 employees Nouryon operates in over 80 countries around the world.

Sustainability is a cornerstone of the overall strategy to achieve long-term success in Nouryon and the focus is on providing innovative and sustainable solutions that meet customers need, while also improving the company's environmental performance and maximizing the positive societal impact.

Further information on www.nouryon.com

Nouryon

2. The product and the process

This EPD has a European scope, covering Sodium Chlorate produced in the following Nouryon plants:

- (Sweden) Stockvik
- Alby (Sweden)
- Oulu (Finland)
- Ambès (France)

Sodium chlorate (NaClO3) is an efficient oxidising agent. Sodium chlorate from Nouryon is supplied to customers in crystalline form (and to some extent in liquid form) and delivered by tanker trucks, rail tank cars or tank containers containing up to 60 ton. Delivery can also be made in "bigbags" containing approximately 1 Mt.

Sodium chlorate is produced by electrolysis of a salt solution. The raw materials are sodium chloride (NaCl), water and electrical power. Sodium chlorate and hydrogen gas (H₂) are formed in the process. Hydrogen can be used as a chemical raw material (for hydration, manufacturing of hydrogen peroxide etc.) or as a fuel. The solution formed is crystallised and the chlorate crystals are separated, washed and dried.

Following the cut-off rules indicated in the PCR, this LCA includes 99% of the total inflow. Some materials added in small quantities have not been considered.

3. Sodium Chlorate

H411: Toxic to aquatic life with long lasting effects.

Functional and chemical characteristics

Sodium chlorate (NaClO₃) from Nouryon is mainly used at pulp mills in the production of chlorine dioxide used for ECF-bleaching of chemical pulp. Sodium chlorate is an efficient oxidising agent.

Sodium chlorate from Nouryon contains ≥99,5 % sodium chlorate. Sodium chlorate is classified and labelled oxidising, harmful and dangerous for the environment.

Sodium chlorate	Category of danger Oxidising, Harmful, Dangerous for the	Symbol letters O, Xn, N	Hazard phrases H271, H302, H411
	environment		
H271: May cause fire or H302: Harmful if swallow	explosion; strong oxidiser.		

4. Environmental performance – LCA

The Environmental performance was calculated using LCA (life cycle assessment). All major steps from the extraction of natural resources until transport of the product to customer are included in the environmental performance of the manufacturing phase (cradle-to-gate).

This study was conducted following the product category rules (PCR) 2011:18 (Version 2.01) for the assessment of the environmental performance of UN "CPC 342 – Basic inorganic chemicals n.e.c.", published by the International EPD system.

The data used were collected for year 2016. Site-specific data has been retrieved. For some of the raw materials, generic data has been used according to the suggested sources in the PCR.

The production yields hydrogen and heat as commercial by-products. The allocation between the products have been done on the basis of their respective economic value.

Sodium chlorate from Nouryon is supplied to customers in crystalline form and delivered by tanker trucks, rail tank cars or tank containing up to 60 ton. Delivery can also be made in "big-bags" containing approximately 1 Mt.

FUNCTIONAL UNIT

The functional unit in this study is 1000 kg of sodium chlorate (100% concentration). NaClO₃ is in crystalline form. The displayed figures are given as an average for Nouryon's European production.

SYSTEM BOUNDARIES AND CUT-OFFS

The environmental performance is constituted of three life cycle phases: upstream, core and downstream (transport to customer).

4.1 RESULTS-->Use of Resources

Note: EPD:s from different programs may not be comparable

NON RENEWABLE RESOURCES FU: 1000 kg		UPSTREAM	CORE	DOWNSTREAM	
		Raw Materials	Production	Distribution	TOTAL
	Sodium Chloride	5,6	536	0,01	542
	Inert rock	12	0,01	3,6	16
MATERIAL RESOURCES	Soil	15	30	0,84	46
(kg)	Gravel	7,9	19	0,39	28
	Others	4,6	6,3	2,0	13
MATERIAL RESOURCES (MJ)	Peat	4,3	0,00	0,00	4,3

4.1 RESULTS-->Use of Resources

Note: EPD:s from different programs may not be comparable

NON RENEWABLE RESOURCES FU: 1000 kg		UPSTREAM	CORE	DOWNSTREAM	
		Raw Materials	Production	Distribution	TOTAL
	Hard coal	7,0	20	0,18	27
	Natural Gas	22	12	2,3	36
ENERGY RESOURCES	Oil	13	3,1	28	44
(kg)	(kg) Lignite	1,7	0,98	0,23	2,9
Other	Other	0,03	0,05	0,00	0,07
	Nuclear	5495	24431	5,5	29932
ENERGY	Natural gas ENERGY	731	369	102	1202
RESOURCES (MJ)	Oil	571	134	1178	1884
	Other	161	380	4,5	546

4.1 RESULTS-->Use of Resources

Note: EPD:s from different programs may not be comparable

RENEWABLE RESOURCES FU: 1000 kg		UPSTREAM	CORE	DOWNSTREAM	
		Raw Materials	Production	Distribution	TOTAL
	Biomass	1,3	1,4	0,04	2,7
ENERGY RESOURCES (MJ)	Hydroelectric	2933	5706	169	8808
	Wind, Solar & Other	192	231	68	491

WATER CONSUMPTION [m3] (excluding water use in energy production)				TOTAL
FU: 1 000 kg	Raw Materials	Production	Distribution	TOTAL
Ground water	0,03	0,02	0,09	0,14
River water	8,7	0,13	3,5	12
Surface water	0,52	1,1	0,26	1,9

4.1 RESULTS-->Environmental impact & waste

ENVIRONMENTAL	UPSTREAM	CORE	DOWNSTREAM	
IMPACTS FU: 1000 kg	Raw Materials	Production	Distribution	TOTAL
Global Warming Potential (CO ₂ -eq.), excl. biogenic and sequestered	95	80	95	270
Acidification Potential (SO ₂ -eq.)	0,59	0,25	0,59	1,4
Ozone Creation Potential (kg Ethene-eq.)*	0,04	0,02	0,06	0,11
Photochemical oxidant formation (kg NMVOC)	0,51	0,19	0,91	1,60
Ozone Depletion Potential (kg CFC 11-eq.)	6,3E-06	1,9E-06	6,9E-07	8,9E-06
Oxygen depletion potential (kg PO43 ⁻ -eq.)	0,13	0,16	0,12	0,42
Eutrophication, freshwater (kg P-eq)	0,01	0,02	7,12E-04	0,03
Eutrophication, marine (kg N-eq)	0,04	0,01	0,04	0,09
Abiotic Depletion Potential (kg Sb-eq.)	1,8E-04	6,3E-05	6,4E-06	2,5E-04
WASTE	UPSTREAM	CORE	DOWNSTREAM	
FU: 1 000kg	Raw Materials	Production	Distribution	TOTAL
Hazardous (kg)	0,10	0,39	0	0,49
Non-hazardous (kg)	14	1,1	4,7	20
Radioactive (kg)	0,01	0	0	0,01

4.1 RESULTS-->Emissions

WATER EMICCIONIC	UPSTREAM	CORE	DOWNSTREAM	
WATER EMISSIONS FU: 1 000 kg	Raw Materials	Production	Distribution	TOTAL
N total [kg]	4,9E-03	7,6E-05	4,6E-13	5,0E-03
P total [kg]	1,1E-03	2,7E-03	5,7E-04	4,3E-03
COD [kg]	1,7	3,3	0,12	5,1
BOD [kg]	0,06	0,02	0,02	0,11
	UPSTREAM	CORE	DOWNSTREAM	TOTAL
AIR EMISSIONs FU: 1 000kg	Raw Materials	Production	Distribution	
Fossil CO ₂ (kg)	91	77	92	261
SO ₂ (kg)	0,29	0,13	0,13	0,55
CH ₄ (kg)	0,13	0,07	0,11	0,31
NO _x (kg)	0,47	0,16	0,84	1,5
NMVOC (kg)	0,06	0,02	0,07	0,15
CO (kg)	0,06	0,08	0,16	0,30
Particulates (kg)	0,17	0,07	0,23	0,47

4.1 RESULTS-->Recycling

MATERIAL CURIECT TO RECVOLING	UPSTREAM	CORE	DOWNSTREAM	
MATERIAL SUBJECT TO RECYCLING FU: 1 000 kg	Raw Materials	Production	Distribution	TOTAL
Mainly concrete waste	0	0,19	0	0,19

5. Additional information

REFERENCES

- International EPD Consortium, General Programme Instructions (EPD), ver. 2.01 of 11/05/2016;
- PCR 2011:18 for the assessment of the environmental performance of UN CPC 342 Basic inorganic chemicals n.e.c.

CONTACTS

For information about the company Nouryon Contact person: Nina Rechner, nina.rechner@nouryon.com Färjevägen 1 Bohus, Sweden

www.nouryon.com

EPD and underlying LCA study is provided by Nouryon/ IVL

This declaration is publicly available on: www.environdec.com

5. Additional information --> Verification

PCR REVIEW CONDUCTED BY:	The Technical Committee of the The International® EPD System. Chair: Massimo Marino. Contact via info@environdec.com
INDEPENDENT VERIFICATION OF THE DECLARATION AND DATA, ACCORDING TO ISO 14025	EXTERNAL Lars Gunnar Lindfors lasselindfors@me.com
ACCREDITED /APPROVED BY	The International® EPD System