

ENVIRONMENTAL PRODUCT DECLARATION

MERCHANT BARS ITALIAN PLANTS AVERAGE

AFV ACCIAIERIE BELTRAME S.P.A. **AFV BELTRAME GROUP**

Based on PCR

ISO 14025

PCR 2019:14 Construction products v 1.1, 2020-09-14

EN:15804:2012+A2:2019

Certification N° S-P-01558

CPC Code

41

Issue date 2019-10-20

Valid until

Revision date

Programme:

EPD System www.environdec.com

The International

Programme operator:

EPD International AB

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

2026-03-02

2021-05-11 - rev 1

GENERAL INFORMATION

EPD REFERENCES

EPD OWNER: AFV ACCIAIERIE BELTRAME SPA, VIALE DELLA SCIENZA 81, 36100, VICENZA – ITALY PIAZZA GIACOMO MATTEOTTI, 13, 52027 SAN GIOVANNI VALDARNO AREZZO – ITALY VIA PRAMOLLE, 1, 10050 SAN DIDERO TORINO – ITALY

PROGRAM OPERATOR: EPD INTERNATIONAL AB, BOX 21060, SE-100 31 STOCKHOLM, SWEDEN; INFO@ENVIRONDEC.COM

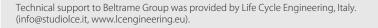
INDEPENDENT VERIFICATION

This declaration has been developed referring to the International EPD System, following the General Programme Instructions v 3.01; further information and the document itself are available at: www.environdec.com. EPD document valid within the following geographical area: Italy and other countries worldwide according to sales market conditions.

ISO standard ISO 21930 and CEN standard EN 15804 served as the core $\ensuremath{\mathsf{PCR}}$

PCR 2019:14 Construction products, Version 1.1, 2020-09-14

PCR review was conducted by: The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact.


Independent verification of the declaration and data, according to EN ISO 14025 : 2010

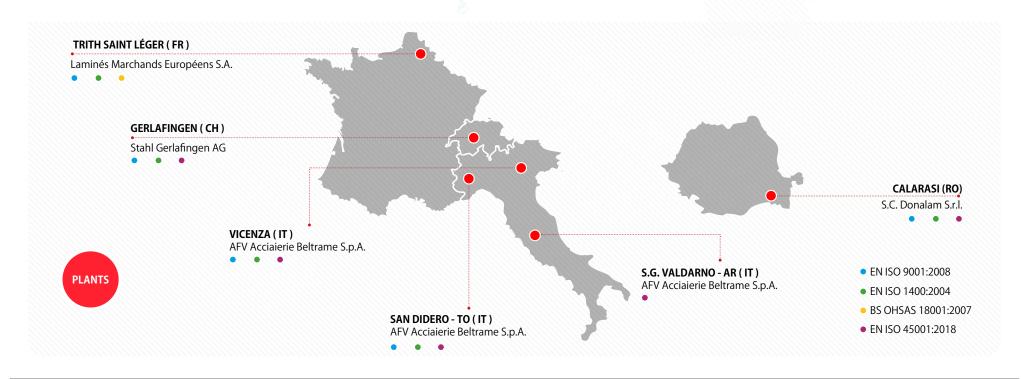
Third party verifier: ICMQ SpA, via De Castillia, 10 20124 Milano (www.icm	q.it) EPD process cert (Internal)	ification FPD verification (External)
Accredited by: Accredia Procedure for follow-up during EPD validity involves third party verifier	YES	ΝΟ

Environmental declarations published within the same product category, but from different programmes may not be comparable. In particular, EPDs of construction products may not be comparable if they do not comply with EN 15804. EPD owner has the sole ownership, liability and responsibility of the EPD.

CONTACTS

Giovan Battista Landra (gb.landra@beltrame.it) Tel. +39 0444 967245 **NFV BELTRAME** GROUP

THE COMPANY


The AFV Beltrame Group has operated in the steel industry for over a century, producing rolled sections for use in construction, shipyards, and excavators.

The facilities, which have a production capacity of approximately **3,2 million tons**, include three electric furnaces and ten rolling mills. These are scattered in six plants located in **Italy**, **France**, **Switzerland**, and **Romania**.

Their geographical distribution is very advantageous given the areas where the products are consumed and those where raw materials are purchased.

The AFV Beltrame Group is commercially present in all European markets as well as in the Mediterranean region through shares in local companies, agents, or the internal sales force. All employees, amounting to approximately **2,000 people**, are strongly committed and motivated to satisfy the customers' needs through constant improvements in production, organization and level of service.

In order to support the principles in the code of ethics and the policy regarding **Quality**, **Health** and **Safety**, and the **Environment** (QHSE), all production plants have adopted an Integrated Management System.

SCOPE AND TYPE OF EPD®

THE APPROACH USED IN THIS EPD IS "CRADLE TO GATE WITH OPTIONS" ONE

TABLE OF MODULES

	PRC	DDUCT ST	AGE	CONSTR PROCES									END OF LIFE STAGE				BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse - Recovery - Recycling potential
MODULE	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Module declared	Х	Х	Х	X	-	MND	MND	MND	MND	MND	MND	MND	Х	Х	Х	Х	Х
Geography	IT	IT	IT	WLD	-	_	-	_	-	-	-	_	WLD	WLD	WLD	WLD	WLD
Specific data used		> 90%		-	-	_	-	-	-	-	-	-	-	-	-	-	-
Variation-products	NOT RELEVANT		ANT	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation-sites: Vicenza	< 10%		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Variation-sites: S.D.*	9,0%	12,1%	13,1%	-	-	_	-	-	-	-	-	-	-	-	-	-	-
Variation-sites: S.G.V.**	12,5%	81,4%	19,0%	-	-	_	-	-	-	-	-	-	-	-	-	-	-

TYPE OF EPD® : Product EPD®

REPORT LCA: Life Cycle Assessment (LCA) of hot rolled bars via EAF process. **REFERENCE PERIOD:** 2019

GEOGRAPHICAL SCOPE OF THE EPD: World according to sales market conditions.

AVERAGING: Weighted on the plant production.

SOFTWARE: SimaPro ver. 9.1.1.1 (www.pre.nl)

MAIN DATABASE: Ecoinvent 3.6

Environmental declarations published within the same product category,

though originating from different programs, may not be comparable.

*S.D. indicates San Didero Plant

**S.G.V. indicates San Giovanni Valdarno Plant

DETAILED PRODUCT DESCRIPTION

This EPD refers to construction products hot rolled structural profiles and merchant bars produced at **Vicenza, San Didero (TO)** and **San Giovanni Valdarno (AR)** plants, with electric arc furnace route, starting from post and pre consumer steel scraps, varying steel grades, e.g. S235, S275, S355, etc..

PRODUCT DIMENSIONS AND SPECIFIC STANDARDS:

- » EN 10025-1:2004
- » EN 10025-2:2004 » Attestation of conformity system 2+ (CE marking)

» EN 10025-5:2004,

CONTENT DECLARATION

MATERIAL	MASS SHARE
IRON	96 %
ALLOY ELEMENTS	2 %
OTHER ELEMENTS	2 %

- No packaging is required for functional unit delivery and distribution, and no renewable material is contained in functional unit

PRODUCT	CTANDADD	DIMENSIO	ONS (mm)	THICKNESS (mm)		
PRODUCT	STANDARD	from	to	from	to	
l sections	EN 10034:1993	80	160	5,2	7,4	
Tees	EN 10055:1995	20	100	3	11	
Angles	EN 10056-1:1998 EN 10056-2:1993	15	160	3	16	
Angles sharp edges	DIN 1022:2004	20	100	3	11	
Flats	EN 10058:2003	10	150	3	50	
Wide flats	DIN 59200:2001	151	250	5	30	
Squares	EN 10059:2003	-	-	10	50	
Rounds	EN 10060:2003	-	-	6	30	
U channels	EN 10279:2000	30	160	4	7,5	

ENVIRONMENTAL PERFORMANCE

The detailed environmental performance (in terms of potential environmental impacts, use of resources and waste generation) is presented for the three phases Upstream, Core and Downstream and related sub-phases (A1-A2-A3-A4-C1-C2-C3-C4-D). Construction installation (A5) and use phase (B1 - B7) are modules not declared (MND).

DECLARED UNIT (D.U.) The declared unit is 1 tonne (1 000 kg) of hot rolled merchant bar.

	VICENZA	SAN DIDERO	SAN GIOVANNI VALDARNO	TOTAL
PRODUCTION [t]	616 375	105 862	44 700	766 937
SHARING	80%	14%	6%	100%

VICENZA, SAN DIDERO AND SAN GIOVANNI VALDARNO'S DATA HAVE BEEN ELABORATED TO GENERATE SINGLE RESULTS THAT REPRESENT A WEIGHTED AVERAGE OF THE THREE PLANTS. THE WEIGHT OF EVERY PLANT IS GIVEN ACCORDING TO THEIR PRODUCTION

ADPE Abiotic depletion potential minerals & metals* ADPF Abiotic depletion potential fossil fuels*

as there is limited experience with the indicator

*: The results of these environmental impact indicator shall be used

with care as the uncertainties on these results are high or

WDP Water use deprivation potential*

AFV BELTRAME - ITALIAN PLANTS

GWP Global warming potential, total	ODP Ozone depletion
GWP,f Global warming potential, fossil	AP Acidification Poter
GWP,b Global warming potential, biogenic	EP,f Eutrophication pe
GWP, luluc Global warming potential, land use & land use change	EP,m Eutrophication p
GWP,ghg Global warming potential, excluding biogenic uptake,	EP,t Eutrophication p
emission and storage	POCP Photochemical

on potential ential potential, freshwater potential, marine potential, terrestrial

al ozone creation potential

Additional environmental impact indicators are computed in the LCA report but not reported in the EPD.

ENVIRONMENTAL IMPACTS PER DECLARED UNIT

POTENTIAL		UPSTREAM	CO	RE			DOWNSTREAM				
ENVIRONMENTAL IMPACTS	UNITS / D.U.	A1	A2	A3 ĨĨ	A4	C1	C2	C3 ∰	C4	TOTAL*	D
GWP	kg CO ₂ eq	4,97E+02	5,00E+01	2,42E+02	8,50E+01	5,10E+01	2,62E+01	1,43E+01	1,26E-01	9,66E+02	6,31E+01
GWP,f	kg CO ₂ eq	4,97E+02	4,99E+01	2,42E+02	8,50E+01	5,10E+01	2,62E+01	1,43E+01	1,26E-01	9,65E+02	6,30E+01
GWP,b	kg CO ₂ eq	1,77E-01	7,34E-02	2,39E-01	5,13E-03	3,59E-03	1,65E-03	2,70E-02	1,74E-05	5,27E-01	8,79E-03
GWP,luluc	kg CO ₂ eq	6,89E-02	8,32E-04	7,85E-02	6,41E-04	7,40E-04	2,09E-04	9,54E-03	3,08E-06	1,59E-01	6,26E-03
GWP,ghg	kg CO ₂ eq	4,97E+02	4,99E+01	2,42E+02	8,50E+01	5,10E+01	2,62E+01	1,43E+01	1,26E-01	9,66E+02	6,31E+01
ODP	kg CFC11 eq	8,66E-05	1,12E-05	8,49E-06	1,96E-05	1,15E-05	6,12E-06	2,66E-06	2,63E-08	1,46E-04	1,88E-06
AP	mol H+ eq	1,93E+00	3,70E-01	4,34E-01	4,93E-01	5,52E-01	1,51E-01	1,23E-01	1,30E-03	4,06E+00	3,04E-01
EP,f	kg P eq	1,35E-02	1,47E-04	3,73E-03	5,54E-05	4,00E-05	1,57E-05	4,31E-04	4,60E-07	1,79E-02	3,77E-03
EP,m	kg N eq	3,77E-01	1,29E-01	1,26E-01	1,98E-01	2,47E-01	6,09E-02	4,79E-02	5,65E-04	1,19E+00	5,84E-02
EP,t	mol N eq	4,22E+00	1,43E+00	1,42E+00	2,17E+00	2,71E+00	6,69E-01	5,29E-01	6,20E-03	1,32E+01	6,60E-01
РОСР	kg NMVOC eq	1,42E+00	3,69E-01	3,79E-01	5,65E-01	7,42E-01	1,74E-01	1,43E-01	1,73E-03	3,79E+00	3,22E-01
ADPE	kg Sb eq	1,21E-04	3,14E-06	2,34E-04	4,71E-06	2,28E-05	1,56E-06	9,04E-06	5,23E-08	3,96E-04	1,14E-03
ADPF	MJ	9,28E+03	7,12E+02	1,11E+03	1,21E+03	7,07E+02	3,74E+02	2,26E+02	1,68E+00	1,36E+04	5,08E+02
WDP	m ³	3,81E+04	2,30E+00	3,79E+02	2,86E+01	1,37E-01	-8,23E-02	9,01E-01	5,78E-04	3,85E+04	5,63E+00

AFV BELTRAME ITALIAN PLANTS

PERE Use of renewable primary energy excluding renewable primary energy resources used as raw materials

- **PERM** Use of renewable primary energy resources used as raw materials
- **PERT** Total use of renewable primary energy resources

PENRE Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials

PENRM Use of non-renewable primary energy resources used as raw materials

PENRT Total use of non-renewable primary energy resources

- **SM** Use of secondary raw materials
- **RSF** Use of renewable secondary fuels
- **NRSF** Use of non-renewable secondary fuels

FW Use of net fresh water

RESOURCE USE PER DECLARED UNIT

		UPSTREAM	CO	RE							
USE OF RESOURCES UN	UNITS / D.U.	A1	A2	A3	A4	C1	C2	C3 ∰∎	C4	TOTAL*	D
PERE	MJ	4,60E+02	1,60E+01	1,46E+02	1,70E+00	1,07E+00	5,23E-01	1,42E+01	6,35E-03	6,39E+02	4,69E+01
PERM	MJ	0,00E+00									
PERT	MJ	4,60E+02	1,60E+01	1,46E+02	1,70E+00	1,07E+00	5,23E-01	1,42E+01	6,35E-03	6,39E+02	4,69E+01
PENRE	MJ	1,11E+04	7,08E+02	7,94E+02	1,18E+03	6,92E+02	3,65E+02	2,40E+02	1,68E+00	1,50E+04	7,56E+02
PENRM	MJ	0,00E+00	0,00E+00	4,66E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,66E+02	0,00E+00
PENRT	MJ	1,11E+04	7,08E+02	1,26E+03	1,18E+03	6,92E+02	3,65E+02	2,40E+02	1,68E+00	1,55E+04	7,56E+02
SM	kg	1,17E+03	0,00E+00	1,17E+03	0,00E+00						
RSF	MJ	0,00E+00									
NRSF	MJ	0,00E+00									
FW	m ³	8,88E+02	7,78E-02	9,28E+00	6,96E-01	1,82E-02	7,40E-03	7,20E-02	5,03E-05	8,98E+02	1,18E-01

*Totals may not correspond to the sum of the individual contributes due to approximations.

AFV BELTRAME ITALIAN PLANTS

HWD Hazardous waste disposed
NHWD Non-hazardous waste disposed
RWD Radioactive waste disposed
CRU Components for re-use
MFR Materials for recycling
MER Materials for energy recovery
EE Exported energy

OUTPUT FLOWS AND WASTE CATEGORIES PER DECLARED UNIT

WASTE GENERATION AND TREATMENT	UNITS / D.U.	UPSTREAM	co	DRE							
		A1	A2	A3	A4	C1	C2	C3	C4	TOTAL*	D
HWD	kg	0,00E+00	0,00E+00	1,84E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,84E+00	0,00E+00
NHWD	kg	1,02E-01	0,00E+00	6,76E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	6,77E+01	0,00E+00
RWD	kg	1,19E-03	0,00E+00	1,19E-03	0,00E+00						
CRU	kg	2,11E-01	0,00E+00	2,11E-01	0,00E+00						
MFR	kg	0,00E+00	1,23E+02	0,00E+00							
MER	kg	0,00E+00	0,00E+00	1,23E+02	0,00E+00						
EE	MJ	0,00E+00									

*Totals may not correspond to the sum of the individual contributes due to approximations.

CALCULATION RULES

METHODOLOGY

The environmental burden of the product has been calculated according to the GPI v. 3.01 issued by the International EPD System¹ (Cradle to gate with options).

This declaration is based on the application of Life Cycle Assessment (LCA) methodology to the whole life-cycle system.

Merchant bars at plant level, was described by using specific data from manufacturing facilities (Vicenza, San Didero and San Giovanni Valdarno) for year 2019.

Customized LCA² questionnaires were used to gather in-depth information about all aspects of the production system (for example, raw materials specifications, pre treatments, process efficiencies, air emissions, waste management), ultimately providing a complete picture of the environmental burden of the system from raw materials supply (A1) to Transport (A2) and Manufacturing (A3). The use phase was not considered according to PCR, while transport to final destination (A4) and end-of-life phases (C1-C2-C3-C4-D) were considered. A distance of 200 km from operation plant and dismantling site was adopted. According to PEFCR a collection rate of 0,95 was adopted. Therefore, in nominal installation and operating conditions, no emissions to air nor to water shall occur.

Data quality has been assessed and validated during data collection process. According to EN:15804 the applied cut-off criterion for mass and energy flows is 1%.

¹International EPD System is managed by EPD International AB (www.environdec.com). ²The LCA methodology is standardized at international level by ISO 14040 and ISO 14044.

DECLARED UNIT

Bars are usually traded in mass so that the declared unit is **1 ton of merchant bars.**

CALCULATION RULES

According to the PCR 2019:14 v. 1.1 the main activities are listed and divided in three subsystems: UPSTREAM Process, CORE Module, DOWNSTREAM Process

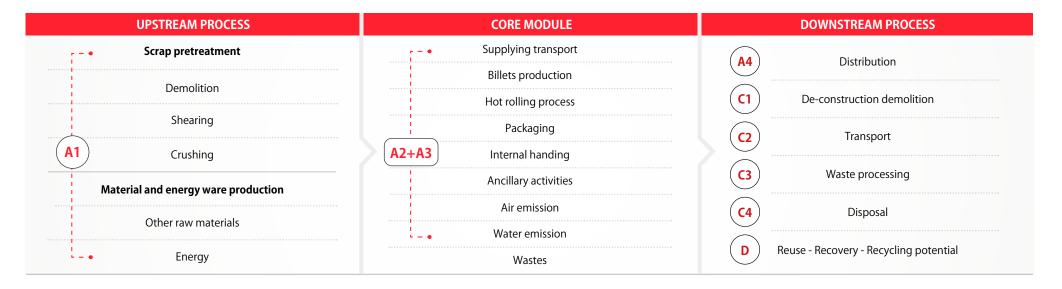
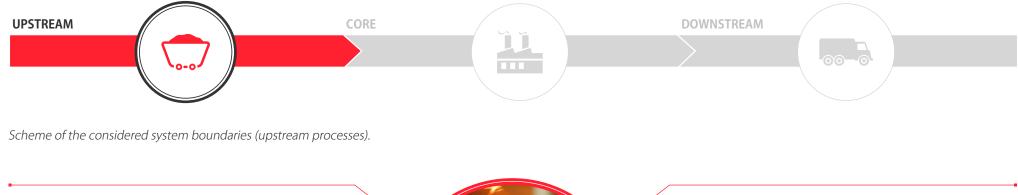
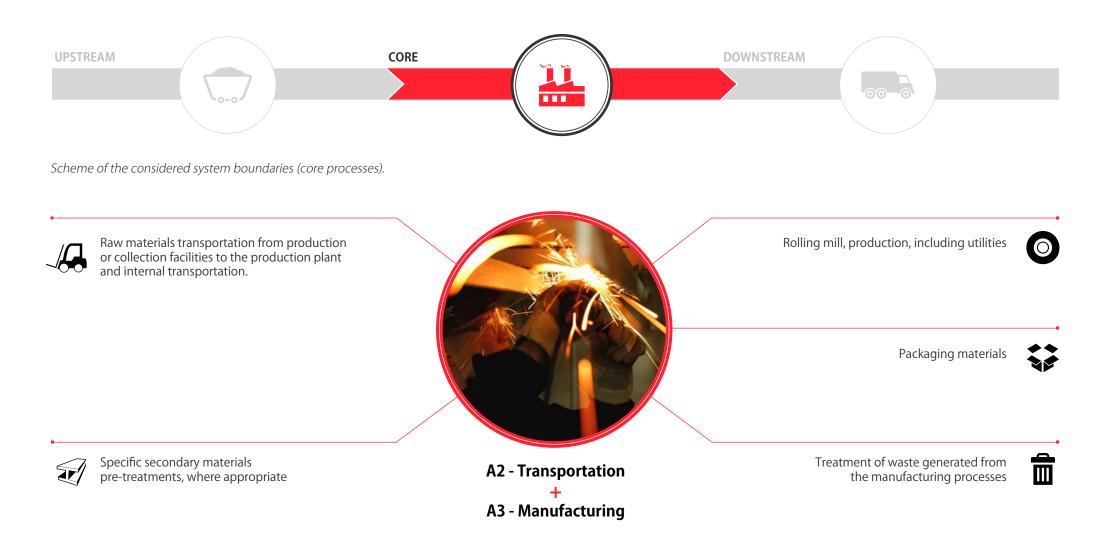



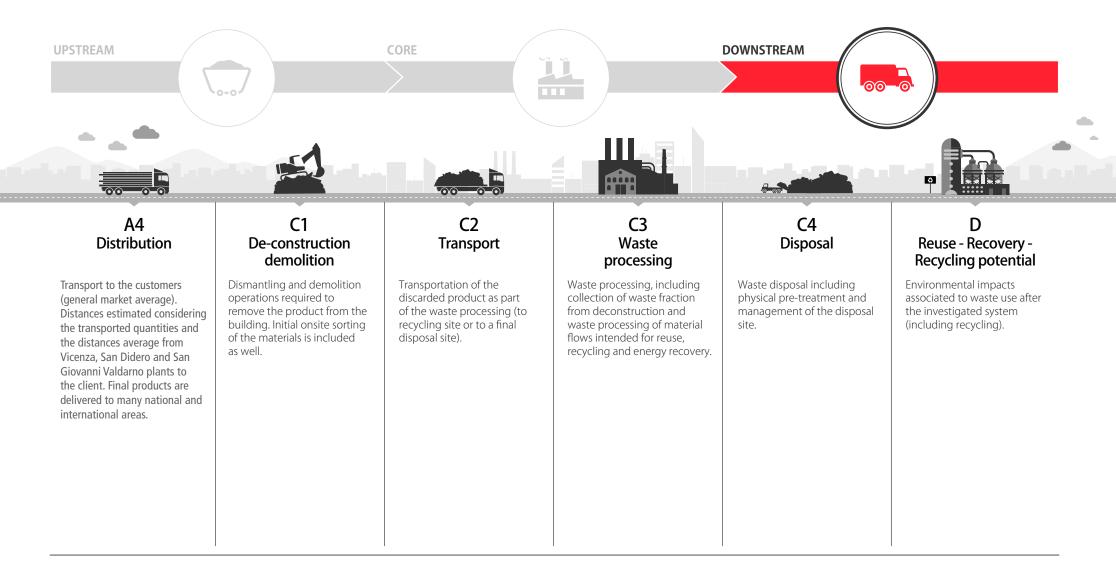
Figure 1. Scheme of the considered system boundaries (including upstream, core and downstream main processes).



UPSTREAM PROCESS



ENVIRONMENTAL PRODUCT DECLARATION


CORE PROCESS

DOWNSTREAM PROCESS

ADDITIONAL INFORMATION

Main environmental characteristics of the considered plants are:

1. EAF primary and secondary dedusting achieve an efficient extraction of all emission sources by using direct off-gas extraction (shaft) and total building evacuation, with subsequent dedusting by means of a bag filter

2. Prevention and reduction of (PCDD/F) and (PCB) emissions by using the combination of the following techniques,

- appropriate rapid quenching of the EAF off-gas
- injection of adsorption agents into the duct
- final dedusting with a bag filter.

3. Minimisation of water consumption by using a recirculating loop cooling system with purge recovery. Removal of solids by sedimentation or filtration, removal of oil with skimming devices.

4. Prevention and reduction of waste generation by using the following techniques:

I. appropriate collection and storage to facilitate specific treatments;

II. on-site recovery and recycling of specific by-products from the different processes;

III. external recovery of filter dusts in the non-ferrous metal industry (zinc, lead); **IV.** separation of scale in the water treatment process and external recovery in the cement and blast-furnace industry;

V. recovery of EAF slag as a secondary raw material (inert aggregates) in the construction industry.

5. Radiation monitoring of scraps and raw materials by means of detection equipment installed at the weighing post.

In accordance with general EPD[®] requirements the LCA study used specific, generic and other generic data. This last data contributes to the environmental indicators less than 10%.

DIFFERENCES VERSUS PREVIOUS VERSIONS

Compared to the previous versions of the EPD there are no differences due to changes in the production processes, which have remained the same.

The only differences are due to the updating of the datasets and reference regulations, which imply the inclusion in the system boundaries of the downstream phases C1 - C2 - C3 - C4 - D.

REFERENCES

- EN 15804:2012+A2:2019

- ISO 14040 : 2006

- ISO 14044 : 2006

- Life Cycle Assessment (LCA) of hot rolled bars via EAF process - italian average

- General Programme Instructions, v3.01 (2019-09-18)

- PCR 2019:14 - Construction products - v 1.1 (2020-09-14)

