

Pesti rustici sauce

Environmental Product Declaration

REGISTRATION NUMBER

S-P-01150

CPC CODE

23995 Sauces PCR 2010:19 v. 3.12 - 06.09.2019

PUBLICATION DATE

2018/06/04

REVISION

3 of 2020/06/30

VALID UNTIL

2025/06/29

PROGRAMME

The International EPD® System www.environdec.com

PROGRAMME OPERATOR

EPD International AB

This EPD has been developed in conformity to ISO 14025. An EPD should provide current information and may be updated if conditions change. The stated validity is, therefore, subject to the continued registration and publication at www.environdec.com.

1. Brand and product

THE BRAND BARILLA

The Brand Barilla, born in the 1877 from a small pasta shop in Parma, represents now one of the most known pasta's brand around the world.

Barilla is a leading company in the Italian and international pasta market, where it operates with the Barilla brand, as a symbol of Italian cuisine, and three major local brands (Misko in Greece, Filiz in Turkey and Yemina in Mexico). Barilla is also active in the segment of pasta sauces, with over 35 different recipes to meet everyone's taste worldwide.

Further information on **Barilla** website.

THE PLANT AND THE PROCESS

Pesti Rustici sauces are produced in an owned plant located in Rubbiano (Italy), where the preparation process is very close to what people would do at home.

Vegetables, all coming from Mediterranean areas, are roughly pounded to maintain an intense flavour and the bright colours of seasonal vegetables. Pesti Rustici sauce undergoes a heat treatment to pasteurize the product while preserving flavour and taste as much as possible over time. The pasteurization treatment, coupled with the integrity of the container, allows us to avoid using any preservatives.

The product is sold in package of 200 grams jar, in three recipes: basil and zucchinis, dried tomatos and Mediterranean vegetables. Sauce may be heated up before the consumption.

THE PRODUCT

NUTRITIONAL INFORMATION (per 100 g)									
		BASIL AND	BASIL AND DRIED						
		ZUCCHINIS	TOMATOES	VEGETABLES					
Energy	kcal	194	176	182					
Lifelgy	kJ	802	727	752					
Fats	grams	15.5	14.5	16					
of which saturated	of which saturated grams		1	1.4					
Carbohydrates	grams	9.9	7.9	6.9					
of which sugars			6.8	6.2					
Fibres	grams	3.5	2.8	2.2					
Proteins grams		1.9	2	1.5					
	-								
Salt	grams	1.65	1.55	1.65					

2. Barilla group

Founded in Parma in 1877 from a bakery and pasta-making store, Barilla is now one of Italy's biggest food groups, world leader on the pasta market and number one in ready-to-use sauces in mainland Europe, bakery products in Italy and crispbreads in the Scandinavian countries. The Barilla Group has 28 production sites (14 in Italy and 14 abroad) and exports to more than 100 countries.

Every year, its plants produce about 1 800 000 tons of food products, enjoyed by consumers all over the world, under the Barilla, Mulino Bianco, Harrys, Pavesi, Wasa, Filiz, Yemina and Vesta, Misko, Voiello, Gran Cereale, Pan di Stelle and Academia Barilla brands

Further information on www.barillagroup.com

Good for You, Good for the Planet

When he opened his store in 1877, Pietro Barilla's overriding aim was to make good food. Today, that principle has become Barilla's corporate mission: "Good for You, Good for the Planet".

GOOD FOR YOU means: continuously improving the nutritional profile of existing products and launching new products that are tasty, safe and contribute to a balanced diet; and promoting healthy lifestyles and sustainable diet inspired by the Italian lifestyle and Mediterranean Diet.

GOOD FOR THE PLANET means: improving the efficiency of production processes in order to reduce greenhouse gas emissions and water consumption; and promoting more sustainable agricultural and farming practices for all of the Group's strategic supply chains.

3. Environmental performance calculations

The environmental performance of the product was calculated using the **LCA (life cycle analysis)** methodology, including the entire production chain, beginning with growing the vegetables up until delivery of the finished product to the main distribution platforms.

The study was conducted following the specific product rules (PCR) published by the EPD system: "CPC code 23995 – Sauce". The generic data contributes to the calculation of environmental impacts is lower than 10%.

DECLARED UNIT

Data are referred to 1 kg of product plus the related packaging (the packaging is referred to the 200 g format, reported to 1 kg of product).

SYSTEM BOUNDARIES

The processes constituting the analysed system were organized in upstream, core and downstream processes, in compliance with the requisites of the EPD system.

4. Raw material production

TOMATO

Impacts related to the tomatoes cultivation have been calculated on the basis of primary data (yields and fertilizer use) collected by farmers.

The semifinished products are produced by suppliers, and the processes are modelized using primary data. Reference year 2018.

VEGETABLE OIL

Data for sunflower oil cultivation come from secondary data (collected from Agrifootprint database), the extraction and refinery data come from literature (Nilsson et al.. 2010).

INGREDIENTS PRODUCTION

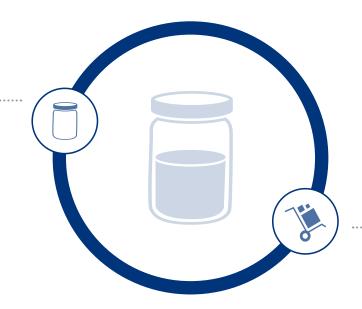
OTHER INGREDIENTS

Data related to the sugar come from Barilla suppliers; data related to other raw materials have been collected by LCA database (mainly Ecoinvent).

VEGETABLES

Zucchinis, basil, pepper and onions data come from LCA database (Ecoinvent).

5. Packaging production


PACKAGING PRODUCTION

PRIMARY PACKAGING

Packaging environmental performances are calculated using the 200g format and are reported per packaging used for 1 kg of product.

The primary packaging consists in glass jar with screw top.

Primary data (from packaging unit) are used for packaging amount and packaging materials production; data about packaging production process come from Barilla LCA database.

PACKAGING FOR TRANSPORTATION

Since 2004. Barilla

with

designs packaging

the"LCA packaging design tool". It allows the assessment of the environmental

impacts of the packaging solutions already

during the design phase.

The packaging for transport consists in cardboard boxes (american box), used for the distribution of the product, and a plastic extensible film. Boxes are made mainly by recycled cardboard carton (pre and post consumer).

Data used have been collected from LCA databases (mainly Ecoinvent).

Packaging used for Barilla products is 100% designed for recycle.

Auxiliary materials environmental performances are evaluated by using primary data from plant, during 2019 year. Secondary data (Ecoinvent) are used for environmental aspects associated to materials production.

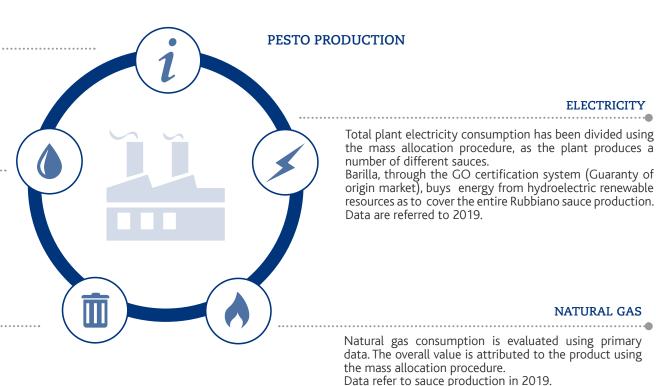
6. Sauce production

GENERAL INFORMATION

The environmental performance related to production processes is evaluated by considering the energy and the water consumption and the waste production as primary data. Secondary data (mainly Ecoinvent) are used for the environmental aspects related to the production of energy and water.

WATER

Water consumption is evaluated using primary data. The overall value is attributed to the product using the mass allocation procedure.


Plant water consumption includes also the water amount needed for ingredients preparation: this amount is included both in plant consumption and product recipe following a precautionary approach.

Data refer to sauce production in 2019.

WASTE

The primary data are collected by the plant registrations. The overall value is attributed to the product using the mass allocation procedure.

Data refer to sauce production in 2019.

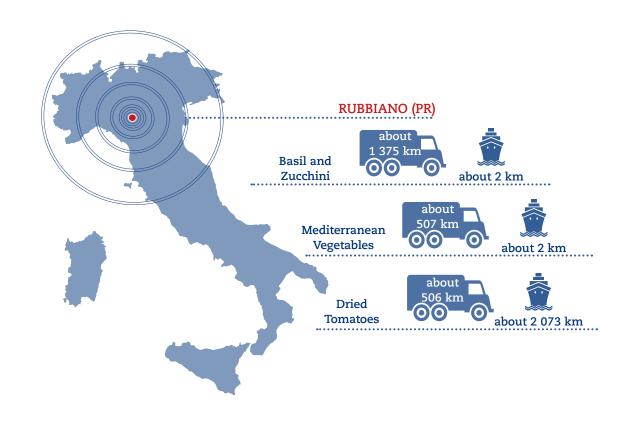
7. Distribution

DISTRIBUTION

Pesti Rustici sauces are produced in Barilla's Rubbiano plant, Italy, and they are distributed mainly in Italy but also in other european countries.

The following hypothesis were applied for distribution scenarios:

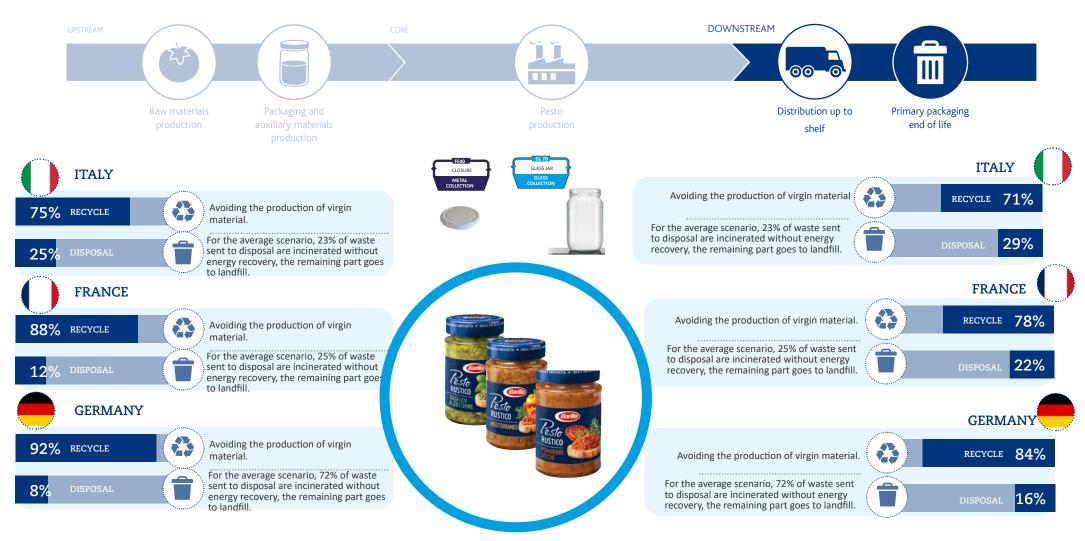
Basil and zucchinis are mainly distributed in Italy, France, Germany, Switzerland and Austria with average 1 375 km covered by truck and 2 km covered by ship; The end of life scenario for paper/board is 89% recycling, 6% energy recovery and 6% disposal. The scenario for plastic film is 27% recycling, 53% energy recovery, 20% disposal.


Mediterranean Vegetables are mainly distributed in Italy, Germany and France with average 506 km covered by truck and 2 km covered by ship.

The end of life scenario for paper/board is 82% recycling, 8% energy recovery and 10% disposal. The scenario for plastic film is 16% recycling, 69% energy recovery, 15% disposal.

Dried Tomatoes are mainly distributed in Italy, Germany and France with average 686 km covered by truck and 4294 km covered by ship.

The end of life scenario for paper/board is 82% recycling, 8% energy recovery and 10% disposal The scenario for plastic film is 18% recycling, 68% energy recovery, 15% disposal.


The products do not require special storage conditions (refrigeration, etc).

8. Primary packaging end of life

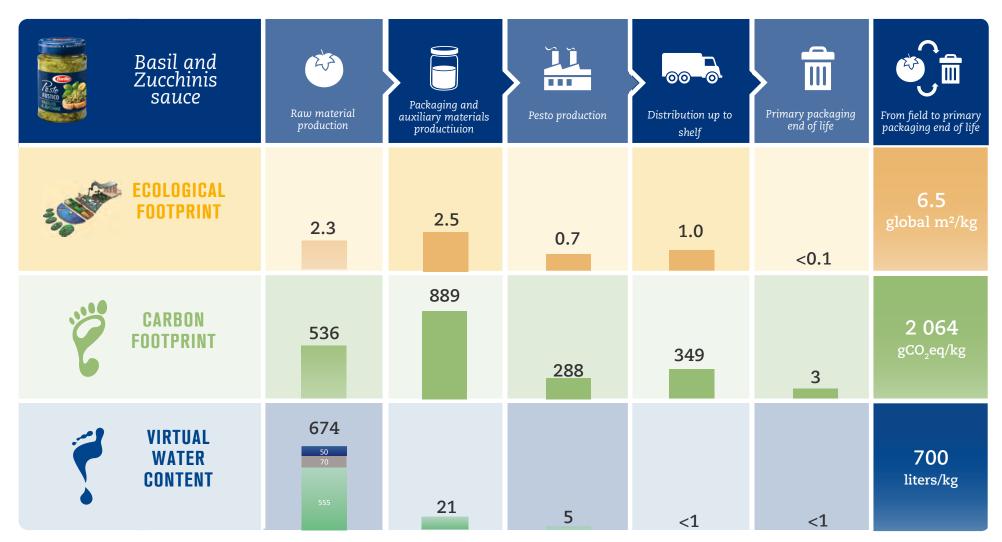
Waste scenarios for Italy, France and Germany are reported since these country cover the main part of distribution for all products (more than 90% for Basil and Zucchinis, 100% for Dried Tomatoes and Mediterranean Vegetables).

Data elaborated from CONAI 2018 Report and from Eurostat, year 2017.

9. Environmental results - Basil and zucchinis

USE OF RESOURCES data referred to 1 kg of product		UPS	ГКЕАМ	CORE	DOWNS	STREAM	
		Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
PRIMARY ENERGY	Used as energy carrier	4,03E-01	1,73E+00	9,38E-01	6,87E-03	7,67E-05	3,08E+00
RESOURCES - RENEWABLE	Used as raw materials*	0,00E+00	1,05E-01	0,00E+00	0,00E+00	0,00E+00	1,05E-01
data in MJ	Total	4,03E-01	1,84E+00	9,38E-01	6,87E-03	7,67E-05	3,18E+00
PRIMARY ENERGY	Used as energy carrier	5,90E+00	1,35E+01	4,28E+00	4,77E+00	1,66E-02	2,85E+01
RESOURCES - NON RENEWABLE	Used as raw materials	0,00E+00	2,84E-01	0,00E+00	0,00E+00	0,00E+00	2,84E-01
data in MJ	Total	5,90E+00	1,38E+01	4,28E+00	4,77E+00	1,66E-02	2,88E+01
Seconda	Secondary Material (g)		2,59E+02	0,00E+00	0,00E+00	0,00E+00	2,59E+02
	Renewable secondary fuels (MJ. net calorific power)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	Non-renewable secondary fuels (MJ. net calorific power)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Net use of	fresh water (liters)	5,01E+01	2,09E+01	4,60E+00	2,05E-01	4,80E-03	7,58E+01
		UPSTREAM		CORE	DOWNSTREAM		
OUTPUT FLOWS data referred to 1 kg of product		Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
Waste to anin	nal feed or similar (g)	0,00E+00	0,00E+00	5,51E+01	0,00E+00	0,00E+00	5,51E+01
Compone	Components for reuse (g)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for recycling (g)		5,31E-02	8,70E+01	1,99E+02	2,05E+01	5,99E+02	9,06E+02
Materials for	energy recovery (g)	0,00E+00	0,00E+00	0,00E+00	4,37E-03	0,00E+00	4,37E-03
Exported energy, electricity (MJ)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Exported energy, thermal (MJ)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Secondary energy resources	and recovered energy flows do no	t show relevant contrib	utions.		*The biomasses tr	ansformed into the produ	ct are not considered.

		UPST	'REAM	CORE	DOWNS	STREAM	
POTENTIAL ENVIRONMENTAL IMPACTS data referred to 1 kg of product		Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
GI ODAI	Fossil	5,11E+02	8,82E+02	2,82E+02	3,47E+02	2,11E+00	2,02E+03
GLOBAL WARMING	Biogenic	9,74E-02	4,48E+00	6,01E+00	1,73E+00	8,54E-01	1,32E+01
POTENTIAL - GWP (g CO ₂ eq)	Land use and land transformation	2,47E+01	2,29E+00	3,82E-03	2,93E-03	5,00E-05	2,70E+01
(g GO ₂ Cq)	Total	5,36E+02	8,89E+02	2,88E+02	3,49E+02	2,97E+00	2,06E+03
Acidification Potentia	al - g SO ₂ eq.	3,83E+00	4,32E+00	7,33E-01	1,43E+00	8,81E-03	1,03E+01
Eutrophication Poten	ntial - g PO ₄ eq.	3,00E+00	7,03E-01	1,73E-01	2,27E-01	2,14E-03	4,11E+00
Photochemical Oxida	ant Formation Potential - gNMVOC eq	1,70E+00	3,78E+00	8,97E-01	1,70E+00	1,29E-02	8,09E+00
Abiotic Depletion Pot	tential - Elements g Sb eq.	7,64E-04	3,94E-02	8,30E-06	2,14E-05	8,05E-07	4,02E-02
Abiotic Depletion Pot value	tential - Fossil fuels - MJ, net calorific	5,46E+00	1,34E+01	4,27E+00	4,76E+00	1,65E-02	2,79E+01
Water scarcity poten	tial, m3 eq.	7,60E+00	4,46E+00	1,67E-01	-1,03E-03	0,00E-00	1,22E+01
		UPST	REAM	CORE	DOWNSTREAM		
111	STE PRODUCTION Ferred to 1 kg of product	Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
Hazar	dous waste disposed*	8,58E-04	1,28E+00	1,60E-02	0,00E+00	0,00E+00	1,3E+00
Non-Ha	zardous waste disposed*	1,28E+01	7,27E+00	6,51E+01	2,40E+00	1,90E+02	2,8E+02
Radio	active waste disposed	1,02E-01	5,02E-01	5,88E-02	1,55E-01	5,56E-04	8,2E-01


The biogenic contribution to Global Warming Potential refers only to biogenic methane. The contribution given by biogenic CO_2 is equal to zero, since the absorbed amount is equal to the emitted biogenic CO_2 within the reference 100 years period.

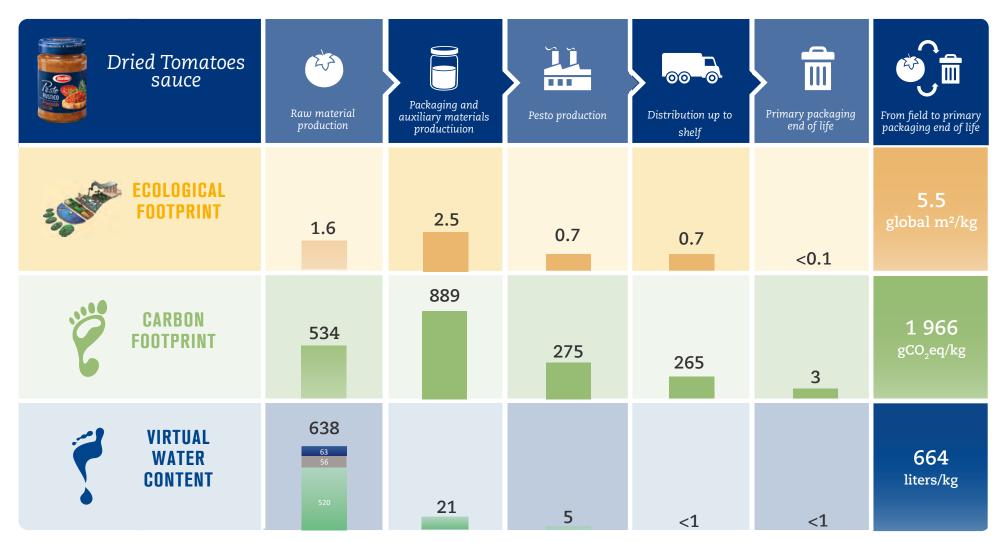
^{*} Only flows coming from processes under direct Barilla control were considered, flows generated by secondary data were excluded.

PRODUCT ENVIRONMENTAL PERFORMANCE

10. Environmental results - Dried Tomatoes

USE OF RESOURCES data referred to 1 kg of product		UPST	'REAM	CORE	DOWNS	STREAM	
		Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
PRIMARY ENERGY	Used as energy carrier	1,62E-01	1,73E+00	9,38E-01	5,05E-03	8,40E-05	2,84E+00
RESOURCES - RENEWABLE	Used as raw materials*	0,00E+00	1,05E-01	0,00E+00	0,00E+00	0,00E+00	1,05E-01
data in MJ	Total	1,62E-01	1,84E+00	9,38E-01	5,05E-03	8,40E-05	2,94E+00
PRIMARY ENERGY	Used as energy carrier	5,96E+00	1,35E+01	4,10E+00	3,47E+00	1,82E-02	2,71E+01
RESOURCES - NON RENEWABLE	Used as raw materials	0,00E+00	2,84E-01	0,00E+00	0,00E+00	0,00E+00	2,84E-01
data in MJ	Total	5,96E+00	1,38E+01	4,10E+00	3,47E+00	1,82E-02	2,74E+01
Seconda	Secondary Material (g)		2,59E+02	0,00E+00	0,00E+00	0,00E+00	2,59E+02
	Renewable secondary fuels (MJ. net calorific power)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Non-renewa (MJ. net	Non-renewable secondary fuels (MJ. net calorific power)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Net use of	fresh water (liters)	6,26E+01	2,09E+01	4,59E+00	1,48E-01	5,24E-03	8,82E+01
		UPSTREAM		CORE	DOWNSTREAM		
	OUTPUT FLOWS data referred to 1 kg of product		Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
Waste to anin	nal feed or similar (g)	0,00E+00	0,00E+00	5,51E+01	0,00E+00	0,00E+00	5,51E+01
Components for reuse (g)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for recycling (g)		1,13E-01	8,70E+01	1,99E+02	1,86E+01	5,80E+02	8,85E+02
Materials for	energy recovery (g)	0,00E+00	0,00E+00	0,00E+00	5,74E-03	0,00E+00	5,74E-03
Exported energy, electricity (MJ)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	Exported energy, thermal (MJ)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Secondary energy resources and recovered energy flows do not show relevant contributions. *The biomasses transformed into the product are not contributions.							ıct are not considered.

		UPST	REAM	CORE	DOWNS	STREAM	
POTENTIAL ENVIRONMENTAL IMPACTS data referred to 1 kg of product		Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
GT 07 47	Fossil	5,08E+02	8,82E+02	2,69E+02	2,62E+02	2,31E+00	1,92E+03
GLOBAL WARMING	Biogenic	4,89E-02	4,48E+00	6,01E+00	2,96E+00	9,34E-01	1,44E+01
POTENTIAL - GWP (g CO ₂ eq)	Land use and land transformation	2,60E+01	2,29E+00	3,71E-03	2,23E-03	5,47E-05	2,83E+01
(g GO ₂ Cq)	Total	5,34E+02	8,89E+02	2,75E+02	2,65E+02	3,25E+00	1,97E+03
Acidification Potential - g SO ₂ eq.		3,60E+00	4,32E+00	6,63E-01	1,95E+00	9,67E-03	1,05E+01
Eutrophication Poten	ıtial - g PO ₄ eq.	2,97E+00	7,03E-01	1,62E-01	3,35E-01	2,35E-03	4,17E+00
Photochemical Oxida	ant Formation Potential - gNMVOC eq	1,64E+00	3,78E+00	8,08E-01	2,54E+00	1,42E-02	8,78E+00
Abiotic Depletion Pot	tential - Elements g Sb eq.	7,81E-04	3,94E-02	7,50E-06	1,59E-05	8,80E-07	4,02E-02
Abiotic Depletion Pot value	rential - Fossil fuels - MJ, net calorific	5,48E+00	1,34E+01	4,09E+00	3,46E+00	1,82E-02	2,64E+01
Water scarcity poten	tial, m3 eq.	8,45E+00	4,46E+00	1,67E-01	0,00E-00	0,00E-00	1,31E+01
		UPST	REAM	CORE	DOWNSTREAM		
111	STE PRODUCTION Ferred to 1 kg of product	Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
Hazar	dous waste disposed*	1,42E-03	1,28E+00	1,60E-02	0,00E+00	0,00E+00	1,3E+00
Non-Ha	zardous waste disposed*	1,50E+01	7,27E+00	6,51E+01	2,90E+00	2,10E+02	3,0E+02
Radio	active waste disposed	1,12E-01	5,02E-01	5,27E-02	1,13E-01	6,10E-04	7,8E-01


The biogenic contribution to Global Warming Potential refers only to biogenic methane. The contribution given by biogenic CO_2 is equal to zero, since the absorbed amount is equal to the emitted biogenic CO_2 within the reference 100 years period.

^{*} Only flows coming from processes under direct Barilla control were considered, flows generated by secondary data were excluded.

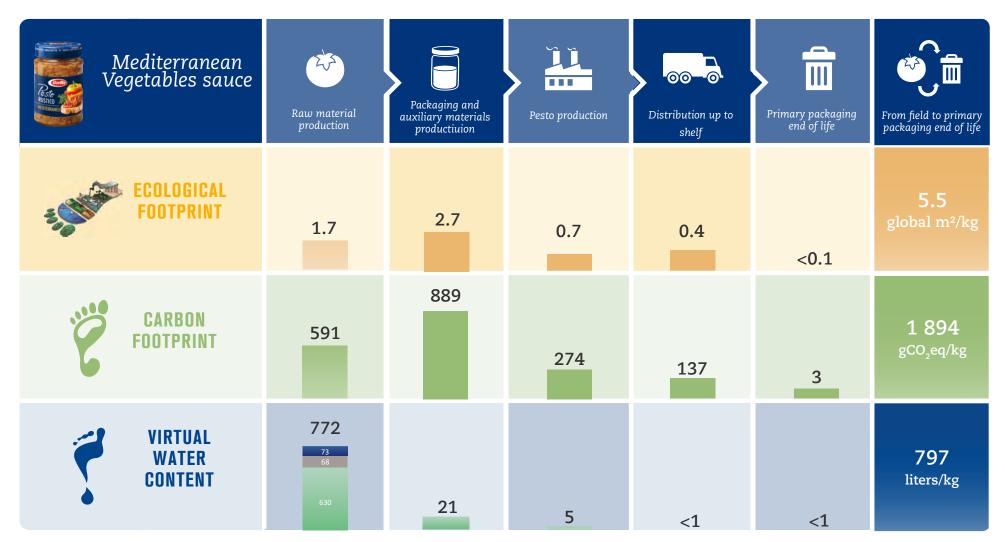
PRODUCT ENVIRONMENTAL PERFORMANCE

11. Environmental results - Mediterranean Vegetables

USE OF RESOURCES data referred to 1 kg of product		UPST	'REAM	CORE	DOWNS	STREAM	**************************************
		Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
PRIMARY ENERGY	Used as energy carrier	1,97E-01	1,73E+00	9,38E-01	2,57E-03	8,62E-05	2,87E+00
RESOURCES - RENEWABLE	Used as raw materials*	0,00E+00	1,05E-01	0,00E+00	0,00E+00	0,00E+00	1,05E-01
data in MJ	Total	1,97E-01	1,84E+00	9,38E-01	2,57E-03	8,62E-05	2,97E+00
PRIMARY ENERGY	Used as energy carrier	6,38E+00	1,35E+01	4,08E+00	1,76E+00	1,87E-02	2,58E+01
RESOURCES - NON RENEWABLE	Used as raw materials	0,00E+00	2,84E-01	0,00E+00	0,00E+00	0,00E+00	2,84E-01
data in MJ	Total	6,38E+00	1,38E+01	4,08E+00	1,76E+00	1,87E-02	2,61E+01
Second	Secondary Material (g)		2,59E+02	0,00E+00	0,00E+00	0,00E+00	2,59E+02
Renewable (MJ. net	Renewable secondary fuels (MJ. net calorific power)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Non-renewa (MJ. net	Non-renewable secondary fuels (MJ. net calorific power)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Net use of	fresh water (liters)	7,27E+01	2,09E+01	4,59E+00	0,00E-00	0,00E-00	9,83E+01
		UPSTREAM		CORE	DOWNSTREAM		
	OUTPUT FLOWS data referred to 1 kg of product		Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
Waste to anin	nal feed or similar (g)	0,00E+00	0,00E+00	5,51E+01	0,00E+00	0,00E+00	5,51E+01
Components for reuse (g)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for recycling (g)		1,06E-01	8,70E+01	1,99E+02	1,84E+01	5,74E+02	8,79E+02
Materials for energy recovery (g)		0,00E+00	0,00E+00	0,00E+00	5,74E-03	0,00E+00	5,74E-03
Exported energy, electricity (MJ)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Exported energy, thermal (MJ)		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Secondary energy resources	econdary energy resources and recovered energy flows do not show relevant contributions. *The biomasses transformed into the product are not consider						

		UPST	REAM	CORE	DOWNS	STREAM	
POTENTIAL ENVIRONMENTAL IMPACTS data referred to 1 kg of product		Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
GT 07 47	Fossil	5,60E+02	8,82E+02	2,68E+02	1,33E+02	2,37E+00	1,85E+03
GLOBAL WARMING	Biogenic	3,12E-02	4,48E+00	6,01E+00	3,11E+00	9,61E-01	1,46E+01
POTENTIAL - GWP (g CO ₂ eq)	Land use and land transformation	3,14E+01	2,29E+00	3,70E-03	1,12E-03	5,61E-05	3,37E+01
(g GO ₂ Cq)	Total	5,91E+02	8,89E+02	2,74E+02	1,37E+02	3,33E+00	1,89E+03
Acidification Potentia	al - g SO ₂ eq.	4,30E+00	4,32E+00	6,58E-01	5,28E-01	9,92E-03	9,82E+00
Eutrophication Poten	ıtial - g PO ₄ eq.	3,62E+00	7,03E-01	1,61E-01	8,52E-02	2,41E-03	4,57E+00
Photochemical Oxida	ant Formation Potential - gNMVOC eq	1,81E+00	3,78E+00	8,01E-01	6,29E-01	1,46E-02	7,04E+00
Abiotic Depletion Pot	tential - Elements g Sb eq.	8,13E-04	3,94E-02	7,44E-06	8,69E-06	9,03E-07	4,03E-02
Abiotic Depletion Pot value	rential - Fossil fuels - MJ, net calorific	5,83E+00	1,34E+01	4,07E+00	1,76E+00	1,86E-02	2,50E+01
Water scarcity poten	tial, m3 eq.	6,89E+00	4,46E+00	1,67E-01	-3,29E-04	-2,54E-03	1,15E+01
		UPST	REAM	CORE	DOWNSTREAM		
111	STE PRODUCTION Ferred to 1 kg of product	Raw material production	Packaging and auxiliary materials production	Production	Distribution up to shelf	Primary packaging end of life	TOTAL
Hazar	dous waste disposed*	1,39E-03	1,28E+00	1,60E-02	0,00E+00	0,00E+00	1,3E+00
Non-Ha	zardous waste disposed*	1,74E+01	7,27E+00	6,51E+01	3,07E+00	2,15E+02	3,1E+02
Radio	active waste disposed	1,08E-01	5,02E-01	5,23E-02	5,72E-02	6,26E-04	7,2E-01

The biogenic contribution to Global Warming Potential refers only to biogenic methane.


The contribution given by biogenic CO₂ is equal to zero, since the absorbed amount is equal to the emitted biogenic CO₂ within the reference 100 years period.

^{*} Only flows coming from processes under direct Barilla control were considered, flows generated by secondary data were excluded.

PRODUCT ENVIRONMENTAL PERFORMANCE

12. Differences versus previous versions of EPD

The differences versus previous EPD versions are due mainly to the use of updated emission factors for the energy mixes, updated packaging formats and updated recipes of the product. Moreover, new characterization factors

and indicators were introduced, as a consequence of GPI update to 3.01 version.

13. Additional information

REFERENCES

- International EPD Consortium, General Programme Instructions (EPD), ver. 3.01 of 18/09/2019;
- WWF, Global Footprint Network, Zoological Society of London, Living Planet Report 2008, WWF (2008);
- Arjen Y. Hoekstra, Ashok K. Chapagain, Maite M. Aldaya, Mesfin M. Mekonnen; Water Footprint The Water Footprint Manual 2011, Waterfootprint Network;
- PCR 2010:19 CPC 23995: Sauces; ver. 3.12 of 01/09/2019;
- Venkat Kumar "Comparison of twelve organic and conventional farming system: a life cycle
- greenhouse gas emissions perspective" 2010, CleanMetrics Corp.
- P. Tsarouhas, et al., Life Cycle Assessment of olive oil production in Greece, Journal of Cleaner Production (2015)
- CONAI Report, relazione sulla gestione e Bilancio, 2018
- Eurostat database for waste management, latest version (2017)

Environmental declarations published within the same product category, though originating from different programs. may not be comparable. This declaration and further information in regards are available at www. environdec.com

As EPD owner, Barilla has the sole ownership, liability and responsibility for the EPD.

EPD PROCESS CERTIFICATION

Product category Rules (PCR) review conducted by: Technical Committee of the International EPD® system. Chair Filippo Sessa

Contact via info@environdec.com

Program operator:

EPD International AB

Box 210 60, SE-100 31 Stockholm, Sweden

info@environdec.com

EPD PROCESS CERTIFICATION

Independent verification of the declaration and data, according to ISO 14025:

EPD process verification

EPD verification- Third party verifier

PROCESS INTERNAL VERIFICATION

Procedure for follow-up of data during EPD validity involves third part verifier:

Third party verifier: Bureau Veritas Certification Sweden AB, Accredited by: SWEDAC

Process internal verifier: Ugo Pretato, Approved by: The International EPD® System

STUDIOFIESCHI & S O C I

CONTACTS

Barilla G. e R. Fratelli- Società per Azioni, via Mantova 166, 43122, Parma, Italy. www.barillagroup.com For additional information relative to the activities of the Barilla Group or in regards to this environmental declaration, please contact: Laura Marchelli - laura.marchelli@barilla.com

Technical support and grafic design: Life Cycle Engineering srl - Italy www.lcengineering.eu

14. Glossary

ECOLOGICAL FOOTPRINT

The ecological foot-

print measures the

area of biologically

productive land and

water required to pro-

vide the resources used

and absorb the carbon

dioxide waste generat-

ed along the entire life

cycle. It is measured in

standard units called

global hectares (gha).

A product carbon footprint is the total amount of greenhouse gases produced along the entire life cycle. It is expressed in equivalent mass of carbon dioxide (CO₂-eq). In agriculture a significant contribution is given by the emission of nitrous oxide (N2O) due to the fertilizers use. It is also known as Global Warming Poten-

CARBON

FOOTPRINT

www.globalfootprint.org

www.ipcc.ch

tial (GWP).

The virtual water content is the water both direct and indirect required to manufacture a product along its entire life cycle. Water footprint is defined as green water (evapotranspiration of water from plants). as blue water (directly used fresh surface and groundwater) and as grey water (the volume of water that is required to dilute pollutants so that the quality of the water

VIRTUAL WATER

CONTENT

www.waterfootprint.org

remains above agreed quality standards).

ACIDIFICATION (AP)

It is a phenomenon for which precipitation is unusually acidic, meaning that it has substandard levels of pH. It can have harmful effects on plants, aquatic animals and infrastructure. Acid rain is caused by emissions of SO₂. NO_x and NH₃. The acidification potential is measured in mass of sulphur dioxide equivalent (SO2-eq).

EUTROPHICATION (EP)

It is an abnormal proliferation of vegetation in the aquatic ecosystems caused by the addition of nutrients into rivers. lakes or ocean. which determinates a lack of oxygen. The eutrophication potential is mainly influenced by emission into water of phosphates and nitrates. It is expressed in mass of POA requivalent.

PHOTOCHEMICAL OXIDANT FORMA-TION POTENTIAL (POFP)

Production of compounds that, under the light effect, are able to promote an oxidation reaction leading to ozone production in the troposphere.

The indicator is mainly influenced by VOCs (Volatile organic compounds) is usually expressed in mass of ethylene equivalent (g NMVOC - equivalent).

