Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for:

Woven vinyl flooring delivered as rolls

BOLON

Industrivägen 12, SE-523 90 Ulricehamn, Sweden

Programme:	The International EPD [®] System, www.environdec.com
Programme operator:	EPD International AB
EPD registration number:	S-P-03839
Publication date:	2021-10-27
Valid until:	2026-10-27

General information

Programme information

Programme:	The International EPD [®] System
Address:	EPD International AB Box 210 60 SE-100 31 Stockholm Sweden
Website:	www.environdec.com
E-mail:	info@environdec.com

CEN standard EN 15804 and EN 16810 serves as the Core Product Category Rules (PCR)

Product category rules (PCR): PCR 2019:14 version 1.11 Construction products (EN 15804:2012+A2:2019) and Sub-PCR-F Resilient textile and laminate floor coverings (EN 16810)

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

 \Box EPD process certification \boxtimes EPD verification

Third party verifier: Martyna Mikusinska, Sweco AB

Procedure for follow-up of data during EPD validity involves third party verifier:

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

Company information

Owner of the EPD: Bolon AB

Contact: Michaela Ljungdahl

<u>Description of the organisation</u>: Bolon is a Swedish design company that makes innovative flooring solutions for public spaces. It is a third-generation family business run by sisters Annica and Marie Eklund. Under their leadership, Bolon has transformed from a traditional weaving mill into an international design brand with clients in different sectors all over the world. With a strong commitment to sustainability, Bolon designs and manufactures all its products at a facility in Ulricehamn in Sweden. The company is recognized worldwide for its award-winning flooring and its collaborations with some of the world's most acclaimed innovators and creatives.

<u>Product-related related certifications*:</u> The product meets the requirement of EN 14041, CE- certified. Emissions certificate, e.g M1 and Floorescore Rawmaterial, Green star Best environmental practice PVC

*For updated information contact customer support or visit Bolon.com.

Name and location of production site(s): Bolon, Industrivägen 12, 523 90 Ulricehamn Sweden

Product information

Product name: Woven vinyl flooring delivered as rolls

Product identification:

Bolon flooring is tested to the EN 1307 standard for textile floor coverings and classified according to, textile and laminate floor coverings (ISO 10874).

Product description:

Bolon flooring in rolls is composed by four layers, one weave and three backing layers, giving the product its unique qualities. The weave layer is made of vinyl warp and weft yarn tightly woven together. The variations of the warp and weft yarn together with the different weaving techniques gives Bolon flooring its vast design alternatives.

Floors are graded into different classes according to their resistance to wear. For example, they are suitable for hotels, shops, offices, and high traffic areas, such as public halls.

Expected service lifetime: 20-30 years

All floor manufacturing takes place in Ulricehamn, Sweden. Here we manufacture the thread and the backing, weave the designer surface, and combine all these elements into a high-quality floor. Recycling is an integral part of our production, the recycled material is self-declared according to ISO 14021.

The floor is than packed and shipped to customers. Installation is normally made with adhesives, alternative installations methods are possible within Bolon recommendations. The floor coverings are water resistant and are cleaned using wet methods. Most cleaning needs can be accomplished with a vacuum cleaner, scrubbing brush, water, and a minimal dose of stain remover.

At the end of its life the product is sent to either landfill or incineration with energy recovery.

LCA information

<u>Functional unit / declared unit:</u> 1 m² of floor covering with a reference service life (RSL) of 1 year for specified characteristics application and use areas according to declared use classification ISO 10874.

Reference service life: 1 year

Type of EPD: average

The EPD covers all products of Woven vinyl flooring that are delivered as rolls produced in Ulricehamn. The difference between the products is a variation of product weight and pigmentation which can be seen under product information. The sensitivity analysis of the LCA shows that all environmental impact indicators results are within +/-10% of the presented environmental information.

Time representativeness: 2020

Database(s) and LCA software used: SimaPro 9.2.0.1, LCI database: Ecoinvent 3.7

Description of system boundaries: Cradle to grave and module D (A + B + C + D)

EPD®

System diagram:

Modules declared

	Pro sta	duct ige	Co pro	onstruct cess st	ion age	Use stage*						End of life stage				Resource recovery stage	ə /	
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential	
Module	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D	
Modules declared	х	х	х	х	х	MND	х	MND	MND	MND	MND	MND	х	х	х	х	Х	
Geography	EU	EU	SE	GLO	GLO	MND	GLO	MND	MND	MND	MND	MND	GLO	GLO	GLO	GLO	GLO	

Data quality

Data for upstream processes (A1) has been collected directly from suppliers. Raw material and energy use as well as transports are included.

All data for the production (A3) has been collected from Bolon and is representative of the production practices under 2019. In the cases where no specific data could be used, available generic data was used mainly provided by Ecoinvent 3.7 (2021).

Generic data was also used for the transportation of raw material (A2), however, distance and information regarding the type of transportation was collected from Bolon.

Downstream waste management data is based on regional average treatment of PVC waste (Europe, Asia, and USA).

General information

LCA & EPD author	Viktor Hakkarainen, Miljögiraff AB								
Cut-off rules	<1% for specific process, <5% for sum of all processes								
Cut-off applications	 Impact from different pigmentations (<0,2 w% of total weight) 								
	 Materials with presence <0,1 w% 								
Excluded parts	 Production of capital goods for manufacturing (machines and facilities) 								
	 Potential transports from retailer to installation site 								
	 Maintenance products packaging and transport 								
Electricity source	Hydropower (3,96 g CO2 eq/kWh)								
Assumptions	 All road transports are assumed to be made with 16-32t EURO 5 trucks 								
	 All sea transports are assumed to be made with container ships 								
	 All product packaging is assumed to go to incineration with heat recovery 								
	- At the end of life, the product is assumed to be transported 200 km to a waste								
	treatment facility.								
	 80% global average energy efficiency is assumed for district heating plants 								
(CHP).									
O se anno a blia a blia anno ann									
Geographical coverage	Upstream data: Good (Country specific)								
	Core module (A3): Very good (site-specific)								
	Downstream data: Medium (continent specific)								
Technological	Upstream data: Good (Generic data based on plant averages)								
representativeness	Core module (A3): Very good (site-specific)								
	Downstream data: Good (Generic data based on plant averages)								
Time-related coverage	Upstream data: Good								
	Core module (A3): Very good (2019 data)								
	Downstream data: Good								
Consistency, allocation	In general allocation follows a physical causality in line with EN 15804.								
method, etc.	For purchased industry spillage, material economic allocation in line with EN 15804 is								
	used.								
Completeness and treatment of missing data	No data is found missing.								

Product information

Characteristics*		Comments
Weight	2,8-3,1 kg/m ²	Weight depends on collection
Thickness	2,3-2,5 mm	Thickness depends on collection

Fire resistance	B _{fl} -s1	EN 13501-1
Friction	>0,3	EN 13893
Colour fastness to light	>7	EN ISO 105-B02

FΡ

*For more information see Bolon.com and technical specification.

Content information

Product components*	Composition weight %
Filler (Calcium carbonate)	25-50
Polyvinylchloride (PVC)	25-50
Plasticizer	10-25
Polyester	<2
Fiber glas	<2

Recycled content is calculated on yearly basis acc. to ISO 14021. Visit Bolon.com for information. *For more specified content, visit Bolon.com and see Declaration of content.

The product does not contain any substances classified as "hazardous substance" (SVHC) and fulfils REACH legislation.

Scenario information

Average transport distances (A4)

Road transport type	Road transport distance (km)	Sea transport type	Sea transport distance (km)
Euro 5 truck 16-32t	666	Container ship	6756

Installation (A5)

10% of the product is lost during installation

Materials consumed in use phase per m² flooring (B2)

Material or energy	Quantity	Reference service life	Comment
Electricity	0,314 kWh/year	1 year	Electricity for vacuuming
Floor cleaning agent	0,09 litres/year	1 year	Cleaning agent for wet cleaning.
Water	9,0 litres/year	1 year	Water for wet cleaning

End of life (C1-C4)

The flooring is removed and transported to a waste treatment facility, shares are region based according to table below:

Treatment	Europe	USA	Asia
Incineration with energy recovery	54%	18%	48%
Landfill	46%	82%	52%

EPD[®]

Environmental Information

Potential environmental impact - mandatory indicators according to EN 15804

	Results per functional or declared unit															
Indicator	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B 6	B7	C1	C2	C3	C4	D
GWP- total	$kg \ CO_2 \ eq.$	5,18	0,57	1,08	ND	0,35	ND	ND	ND	ND	ND	ND	0,10	ND	2,79	-2,12
GWP-fossil	kg CO_2 eq.	5,35	0,57	0,75	ND	0,28	ND	ND	ND	ND	ND	ND	0,10	ND	2,74	-1,99
GWP- biogenic	kg CO_2 eq.	-0,31	0,00	0,34	ND	0,06	ND	ND	ND	ND	ND	ND	0,00	ND	0,05	-0,13
GWP- luluc	kg CO ₂ eq.	0,15	0,00	0,00	ND	0,00	ND	ND	ND	ND	ND	ND	0,00	ND	0,00	-0,01
ODP	kg CFC 11 eq.	2,26E-06	1,25E-07	1,21E-08	ND	1,49E-08	ND	ND	ND	ND	ND	ND	2,25E-08	ND	9,16E-08	-5,78E- 08
AP	mol H⁺ eq.	2,09E-02	8,28E-03	2,22E-03	ND	1,47E-03	ND	ND	ND	ND	ND	ND	4,24E-04	ND	2,10E-03	-1,20E- 02
EP- freshwater	kg P eq	9,58E-04	3,12E-05	3,25E-05	ND	1,33E-04	ND	ND	ND	ND	ND	ND	7,99E-06	ND	1,21E-04	-8,11E- 04
EP- freshwater	kg PO4 ⁻³ eq	2,94E-03	9,58E-05	9,98E-05	ND	4,08E-04	ND	ND	ND	ND	ND	ND	2,45E-05	ND	3,70E-04	-2,49E- 03
EP- marine	kg N eq.	4,47E-03	2,13E-03	5,11E-04	ND	3,15E-04	ND	ND	ND	ND	ND	ND	1,27E-04	ND	1,17E-03	-1,95E- 03
EP-terrestrial	mol N eq.	4,19E-02	2,35E-02	3,59E-03	ND	2,91E-03	ND	ND	ND	ND	ND	ND	1,39E-03	ND	5,95E-03	-1,98E- 02
POCP	kg NMVOC eq.	1,41E-02	6,31E-03	1,56E-03	ND	7,78E-04	ND	ND	ND	ND	ND	ND	4,21E-04	ND	1,68E-03	-5,47E- 03
ADP- minerals & metals*	kg Sb eq.	5,56E-05	1,59E-06	8,84E-07	ND	1,76E-06	ND	ND	ND	ND	ND	ND	3,63E-07	ND	2,51E-06	-2,57E- 06
ADP-fossil*	MJ	134,5	8,2	6,5	ND	3,8	ND	ND	ND	ND	ND	ND	1,5	ND	4,6	-26,7
WDP	m ³	5,14	0,02	0,50	ND	0,46	ND	ND	ND	ND	ND	ND	0,00	ND	3,81	-0,28
Acronyms	GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals & metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential deprivation-weighted water consumption															

* Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Potential environmental impact – additional mandatory and voluntary indicators

Results per functional or declared unit																
Indicator	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Particulate matter	disease inc.	1,81E-07	3,15E-08	1,77E-08	ND	1,17E-08	ND	ND	ND	ND	ND	ND	7,14E-09	ND	1,78E-08	-1,48E-07
Ionising radiation	kBq U-235 eq	1,93	0,04	0,01	ND	0,04	ND	ND	ND	ND	ND	ND	0,01	ND	0,03	-0,54
Ecotoxicity, freshwater	CTUe	113,7	5,8	18,2	ND	6,2	ND	ND	ND	ND	ND	ND	1,3	ND	151,3	-49,0
Human toxicity, cancer	CTUh	3,34E-09	2,90E-10	1,13E-10	ND	1,28E-10	ND	ND	ND	ND	ND	ND	4,20E-11	ND	5,48E-10	-5,54E-10
Human toxicity, non-cancer	CTUh	8,18E-08	5,26E-09	6,23E-09	ND	3,33E-09	ND	ND	ND	ND	ND	ND	1,21E-09	ND	4,12E-08	-1,72E-08
Land use	Pt	50,50	4,17	0,44	ND	1,08	ND	ND	ND	ND	ND	ND	1,04	ND	3,28	-8,88

Use of resources

	Results per functional or declared unit															
Indicator	Unit	A1-A3	A4	A5	B1	B2	B 3	B4	В5	B6	B7	C1	C2	C3	C4	D
PERE	MJ	24,4	0,09	0,09	ND	0,56	ND	ND	ND	ND	ND	ND	0,02	ND	0,38	-4,88
PERM	MJ	2,1	0,00	0,00	ND	0,00	ND	ND	ND	ND	ND	ND	0,00	ND	0,00	0,00
PERT	MJ	26,5	0,09	0,09	ND	0,56	ND	ND	ND	ND	ND	ND	0,02	ND	0,38	-4,88
PENRE	MJ	143,4	8,7	7,0	ND	4,0	ND	ND	ND	ND	ND	ND	1,6	ND	4,9	-28,1
PENRM	MJ.	0,0	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	0,0	0,0
PENRT	MJ	143,4	8,7	7,0	ND	4,0	ND	ND	ND	ND	ND	ND	1,6	ND	4,9	-28,1
SM	kg	0,5	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	0,0	0,0
RSF	MJ	0,0	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	0,0	0,0
NRSF	MJ	0,0	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	0,0	0,0
FW	m ³	0,63	0,00	0,01	ND	0,02	ND	ND	ND	ND	ND	ND	0,00	ND	0,12	-0,01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of non-renewable secondary fuels; FW = Use of non-renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of non-renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of non-

Acronyms

Waste production and output flows

Waste production

Results per functional or declared unit																
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Hazardous waste disposed	kg	0	0	0	ND	0	ND	0	0							
Non- hazardous waste disposed	kg	0	0	0	ND	0	ND	0	0							
Radioactive waste disposed	kg	0	0	0	ND	0	ND	0	0							

Since an aggregated dataset that includes waste treatment is used (Ecoinvent 3.7) no waste production is declared.

Output flows

Results per functional or declared unit																
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	В5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0,0	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	0,0	0,0
Material for recycling	kg	0,0	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	0,0	0,0
Materials for energy recovery	kg	0,4	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	1,3	0,0
Exported energy, electricity	MJ	0,0	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	0,0	0,0
Exported energy, thermal	MJ	0,0	0,0	0,0	ND	0,0	ND	ND	ND	ND	ND	ND	0,0	ND	0,0	0,0

Information on biogenic carbon content

Results per functional or declared unit										
BIOGENIC CARBON CONTENT	Unit	QUANTITY								
Biogenic carbon content in product	kg C	0,0								
Biogenic carbon content in packaging	kg C	0,10								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO₂.

References

General Programme Instructions of the International EPD® System. Version 4.0 2021-03-29

PCR 2019:14 version 1.11 Construction products (EN 15804:2012+A2:2019)

Sub-PCR-F Resilient textile and laminate floor coverings (EN 16810:2017) C-PCR-004 (TO PCR 2019:14) VERSION: 2019-12-20

LCA report: "Life Cycle Assessment of Woven Vinyl Flooring. Rolls, Tiles and Acoustic Tiles", 2021, Author: Viktor Hakkarainen, Miljögiraff AB

