

Environmental Product Declaration for Tork Xpressnap[®] Napkins

The

Produced under EPD Australasia in accordance with ISO 14025. EPD registration number: S-P-01541. Version 1.0 of 30/09/2019. Approved 30/09/2019. Valid until 30/09/2022. Reference year: 2018 calendar year. Geographical scope: Australia and New Zealand.

Asaleo Care

Asaleo Care is a leader in Personal Care and Hygiene across Australasia, offering products that provide care, comfort and confidence every day.

The Company manufactures, markets, distributes and sells essential, everyday consumer products including tampons, pads and liners, nappies, toilet and facial tissue, paper towels, serviettes and disposable tableware. Our popular products are recognised household brands like Libra, TENA, Sorbent and Purex, Handee Ultra, Treasures, Deeko, Viti and Orchid.

Our professional hygiene products, which include hand towels, serviettes, toilet and facial tissue, soaps and other hygiene accessories, are sold under the Tork brand to the hospitality sector, schools, hospitals, shopping centres and industrial companies. Our TENA Incontinence Healthcare products and support services are provided to healthcare professionals in residential and community care facilities, retirement villages and hospitals.

Asaleo Care has 15 manufacturing and distribution facilities across Australia, New Zealand and the Pacific Islands. For more information, visit <u>www.asaleocare.com</u>

Tork

Tork is the leading global brand in professional hygiene. From napkin dispensers in restaurant dining rooms to paper towels in hospital washrooms, Tork delivers a great experience for the user and a convenient experience for the buyer.

Tork is dedicated to serving your needs in a sustainable way – saving you time, money and effort, so you can focus on what matters most to your business.

Whenever you need to wipe, dry, clean or polish, we take care of it. Our range of dispensers, refills and services is designed to meet the specific needs of washrooms, industrial environments, kitchens and dining areas.

To learn more about Tork, please visit <u>www.tork.com.au</u> or <u>www.tork.co.nz</u>.

Tork is a registered trademark of Essity, licensed exclusively to Asaleo Care for use in Australia, New Zealand and a number of other countries in the Pacific region.

Sustainability – a core part of how we do business

Sustainability is built into Tork Xpressnap® napkins from the start:

We begin with 100% responsibly-sourced, non-controversial pulp. In particular, we are committed to purchase pulp and paper reels consistent with No Deforestation, No Peat, No Exploitation (NDPE) policies adopted by the forestry and palm oil industries. Our pulp is sourced from socially and environmentally sustainable forests in line with Forest Stewardship Council[®] (FSC[®]) standards, helping protect forests for present and future generations. The pulp that enters our Kawerau paper machines is from 100% FSC certified sources, with a maximum of 30% FSC Controlled Wood sources.

We then manufacture paper locally, using a large share of renewable energy. We are proud to manufacture the products in this Environmental Product Declaration in Kawerau, New Zealand. Our Kawerau operation is certified to ISO 9001, ISO 14001, AS/NZS 4801 and FSC chain of custody. In 2010, we replaced most of our natural gas consumption with geothermal steam in an ongoing partnership with Ngāti Tūwharetoa Geothermal Assets. In addition, our site's electricity comes from the New Zealand grid, comprising 84% renewable energy in 2018 (MBIE 2018). Consequently, since 2009 we have more than halved the greenhouse gas emissions generated from our Kawerau plant.

We help our customers to reduce their environmental footprint through their use of our unique consumption-reducing dispensers and recyclable packaging, both of which help to reduce waste. Our upgrade from bulky cardboard cartons with the Tork Carry Pack led to a six-fold reduction in packaging waste and six times less packaging to transport.

We focus on continuous improvement at Kawerau and in the past decade we have reduced water consumption by over 30%, reduced waste to landfill by a third and almost doubled our waste recycling rate.

This EPD helps to demonstrate Asaleo Care's commitment to sustainability and complements our work with eco-label and sustainability organisations such as FSC, Environmental Choice New Zealand, Sedex and the Dow Jones Sustainability Index.

Environmental Product Declaration (EPD)

An Environmental Product Declaration, or EPD, is a standardised and verified way of quantifying the environmental impacts of a product based on a consistent set of rules known as a PCR (Product Category Rules). Environmental Product Declarations within the same product category from different EPD programmes may not be comparable.

Products covered by this EPD

This EPD covers the Tork Xpressnap[®] White Dispenser Napkin. When paired with a Tork Xpressnap[®] Tabletop Dispenser (not included in this EPD), which dispenses napkins one-at-a-time, napkin consumption can be reduced by up to 25% compared to traditional dispenser napkin systems. This combination is ideal for limited service restaurants that offer napkins at the table. Dispensers are available in a broad range of contemporary colours, making it easy to match your décor.

Tork Xpressnap[®] falls under the following industry classifications: ANZSIC v1.0 C152400 "Sanitary Paper Product Manufacturing" and UN CPC v2 32131 "Toilet or facial tissue stock, towel or napkin stock and similar paper, cellulose wadding and webs of cellulose fibres".

Tork Xpressnap® White Dispenser Napkin

- Single ply, white tissue paper
- FSC Mix 70% certified
- Unfolded sheet dimensions: 33.0 cm wide x 21.6 cm long
- Folded sheet dimensions: 16.2 cm wide x 11.2 cm long
- Net weight per pack of 500 napkins: 659 g
- Article: 2310917

Life cycle of Tork[®] paper products

This EPD covers the full life cycle of paper towel products from cradle-to-grave.

The life cycle starts with (1) forestry to grow wood fibre, (2) production of the chemicals needed to make paper from wood fibre, (3) production of packaging materials, and (4) production of energy for these process steps. These are the **upstream processes**.

Wood chips/residues, chemicals and fuels are transported to pulp mills, where wood pulp is made from wood fibre. This pulp is then transported to Asaleo Care's paper mill where it is formed into paper, cut to size ('converted'), packaged and then warehoused. These steps also require energy to be produced, and for both solid waste and wastewater to be treated. These are the **core processes**.

Finally, finished paper towel products are transported to customers. As the use of a paper towel has no direct environmental impacts, use is not included in this EPD. The final step is end-of-life, where the paper towel and its packaging are disposed. These are the **downstream processes**.

Key parameters and assumptions for the LCA

- Functional unit: 1 tonne (1000 kg) of tissue paper as delivered, plus packaging.
- Manufacturing site: Kawerau, New Zealand.
- **Distribution to customer:** Distribution from the manufacturing plant to customer via Asaleo Care's warehouses is based on a sales-weighted average of the distances travelled in each transport mode (truck and container ship).
- End of life: Two options are provided for end-of-life: landfill and composting. Results are declared separately for each option in the results tables that follow.

77% of paper packaging is assumed to be recycled, with the remainder landfilled. This is based on the Australian average for 2013-14 (APC 2014). The recycling rate in New Zealand is likely to be similar but is not available due to uncertainties in waste statistics (PCNZ 2015).

All waste treatment assumes truck transport of 50 km outbound with an empty backhaul. No credits are applied for recycling paper in line with the PCR (IEPDS 2015).

• **Biogenic carbon emissions from landfill:** From every kilogram of paper, 22% of the mass is biogenic carbon that is converted to landfill gas. From every kilogram of carbon converted to landfill gas, 71.2% is released as carbon dioxide and 28.8% is released as methane.

These percentages are representative of Australian conditions where data quality is best. They have been derived as follows:

- 0.45 kg/kg = degradable organic carbon in paper at 10% water content (ECN 2012)
- 0.49 kg/kg = fraction of carbon that degrades (Australian Government 2018)
- \circ Of the landfill gas formed, 50% is CO_2 and 50% is CH_4 (ibid)
- 36% of the CH₄ is captured, of which 75% is used for energy recovery and 25% is flared (Carre 2011, based on Hyder Consulting 2007)
- 64% of the CH₄ is not captured, of which 90% is released to the atmosphere as CH₄ and 10% is oxidised to CO₂ in the landfill's surface (Australian Government 2018)
- **Biogenic carbon emissions from composting:** This EPD presents emissions from windrow composting one of the most common types of industrial composting. Operational inputs are from UNSW (2003). 92% of the carbon in the paper is assumed to break down following Venelampi et al. (2003), with 9 kg methane released per tonne of paper (IPCC 2006).
- Data for core processes: Primary (specific) data were collected from Asaleo Care and our pulp suppliers as per the PCR (IEPDS 2015). Data are an annual average for the 2018 calendar year. Mono-nitrogen oxides (NOx) have been modelled as nitrogen dioxide (NO₂) and Total Reduced Sulfur (TRS) has been modelled as hydrogen sulfide (H₂S).
- Data for upstream and downstream processes: Secondary (generic) data were used for forestry, chemical production, packaging materials and electricity, as allowed under the PCR (IEPDS 2015). All data are from the GaBi Life Cycle Inventory Database 2019 and are typically representative of the years 2015 to 2018, depending on the dataset (thinkstep 2016).
- **Electricity mixes:** All electricity is based on national averages for 2016 from the GaBi Life Cycle Inventory Database 2019 (thinkstep 2019).
- Allocation: Where required, co-product allocation using the most relevant physical quantity (mass, energy or exergy) was applied for core processes. Allocation rules for secondary data (upstream/downstream processes) are documented on the GaBi website (thinkstep 2019). Recycling allocation follows the polluter pays principle in line with IEPDS (2017).
- **Cut-off criteria:** Environmental impacts relating to personnel, infrastructure, and production equipment not directly consumed in the process are excluded from the system boundary as per the PCR (IEPDS 2015). All other reported data were incorporated and modelled using the best available life cycle inventory data.

Environmental indicators

Indicator	Description
Global Warming Potential (GWP)	Also known as carbon footprint, GWP is the potential of greenhouse gases – such as carbon dioxide and methane – to increase absorption of heat reaching Earth's atmosphere, intensifying the natural greenhouse effect. Net emissions from fossil and biogenic sources are reported separately within this EPD. Biogenic GWP includes the removal of carbon dioxide from the atmosphere as trees grow and the release of this carbon at end-of-life.
Acidification Potential (AP)	The potential of emissions to cause acidifying effects in the environment, typically due to acid rain. Potential downstream effects include fish mortality, forest decline and the deterioration of building materials.
Eutrophication Potential (EP)	The potential of emissions – such as nitrogen (N) and phosphorus (P) – to contribute to excessively high nutrient levels in both aquatic and terrestrial ecosystems, which can cause undesirable shifts in species composition and elevated biomass production (e.g. algal blooms).
Photochemical Ozone Creation Potential (POCP)	A measure of emissions of precursors that contribute to ground-level smog formation (mainly ozone, O_3). Ground-level ozone can be harmful to human and ecosystem health and can also damage crops.
Water	Consumption (net use) of water from lakes, rivers and groundwater. Consumption of rainwater in forests is not included in this EPD as there is currently no widely accepted method for determining a baseline water use case for forests against which consumption could be measured.
Primary Energy Demand (PED)	A measure of the total amount of primary energy extracted from the earth. PED is expressed in energy demand from non-renewable resources (e.g. petroleum, natural gas, etc.) and energy demand from renewable resources (e.g. biomass, hydropower, wind energy, etc.). Efficiencies in energy conversion (e.g. power, heat, steam, etc.) are taken into account.

7

Tork Xpressnap[®] White Dispenser Napkin

Article(s): 2310917

1,000 kg air-dry tissue + 115 kg paper packaging + 0 kg plastic packaging = 1,115 kg total. Paper >99% virgin kraft pulp. Bleaching agent: chlorine dioxide (elemental chlorine free).

Potential Environmental Impacts

Indicator	Unit
GWP (global warming), fossil	kg CO₂e
GWP (global warming), biogenic	kg CO₂e
GWP (global warming), total	kg CO₂e
AP (acidification)	kg SO₂e
EP (eutrophication)	kg PO₄³-e
POCP (photochemical ozone)	kg C ₂ H ₄ e

Upstream Core To Gate

Manufacture

328	1,230	1,560
-3,660	1,830	-1,840
-3,340	3,060	-278
1.78	15.7	17.4
0.359	1.43	1.79
0.169	0.758	0.927

Manufacture

Core

27,700

15,200

42,900

64.5%

Manufacture

Core

7.33E-06

42.4

To Gate

72,600

20,000

92,600

78.4%

To Gate

4.89E-05

46.7

Upstream

44,900

4,820

49,700

90.3%

Upstream

4.15E-05

4.36

Transport + Landfill

Downstream	lotal
150	1,710
3,160	1,330
3,310	3,030
2.34	19.8
0.605	2.40
0.595	1.52

mansport + compost	Trans	port +	Com	post
--------------------	-------	--------	-----	------

Downstream	Total	Reduction
113	1,670	-2%
1,960	125	-91%
2,070	1,790	-41%
1.99	19.4	-2%
0.261	2.05	-15%
0.118	1.04	-32%

Transport + Landfill

Downstream	Total
71.0	72,700
2,020	22,100
2,090	94,700
3.4%	76.7%

Transport + Landfill

Downstream	Total
1.60E-06	5.05E-05
221	267

Transport + Compost

Downstream	Total	Reduction
12.3	72,600	0%
1,380	21,400	-3%
1,390	94,000	-1%
0.9%	77.2%	

Transport + Compost

Downstream	Total	Reduction
1.51E-07	4.90E-05	-3%
7.11	53.9	-80%

Primary Energy Demand (PED)

Indicator	Unit
PED (energy), renewable	MJ
PED (energy), non-renewable	MJ
PED (energy), total	MJ
PED (energy), % renewable	%

Waste

8

Indicator	Unit
Hazardous waste	kg
Non-hazardous waste	kg

Tork Xpressnap[®] White Dispenser Napkin cntd.

Resource Use			Г	Manufacture		Transport + L	andfill	Transp	ort + Comp	ost
Category	Flow	Unit	Upstream	Core	To Gate	Downstream	Total	Downstream	Total	Reduction
Non-renewable	resources									
Materials	Total	kg	158	760	917	194	1,110	7.41	925	-17%
	Inert rock	kg	166	623	789	0.448	790	0.986	790	0%
	Calcium carbonate	kg	45.0	9.56	54.6	2.09	56.7	0.106	54.7	-4%
	Natural aggregate	kg	3.20	57.1	60.3	62.2	123	2.06	62.4	-49%
	Soil	kg	-91.5	58.9	-32.6	26.6	-6.03	0.920	-31.7	-426%
	Quartz sand	kg	0.355	1.40	1.76	36.1	37.8	1.16	2.92	-92%
	Sodium chloride	kg	24.0	0.464	24.4	0.361	24.8	0.0117	24.5	-1%
	Other	kg	10.3	9.39	19.7	66.2	85.9	2.16	21.8	-75%
Energy	Total	kg	125	379	505	51.6	556	33.2	538	-3%
	Natural gas	kg	29.0	243	272	11.6	284	1.71	274	-4%
	Crude oil	kg	39.9	60.9	101	31.2	132	30.3	131	-1%
	Hard coal	kg	33.4	48.4	81.8	2.97	84.8	0.518	82.3	-3%
	Lignite	kg	14.1	22.3	36.3	4.94	41.3	0.638	37.0	-10%
	Shale gas	kg	4.97	0.687	5.66	0.00119	5.66	8.51E-04	5.66	0%
	Tight gas	kg	2.14	2.28	4.42	0.00105	4.42	6.58E-04	4.42	0%
	Other	kg	1.55	1.75	3.30	0.913	4.21	0.0929	3.39	-19%
Renewable reso	urces									
Materials	Biomass (dry)	kg	1,000	0	1,000	0	1,000	0	1,000	0%
Energy	Total	MJ	25,700	27,700	53,400	71.0	53,400	12.3	53,400	0%
	Biomass	MJ	25,100	941	26,000	45.4	26,100	9.63	26,000	0%
	Geothermal	MJ	364	18,400	18,800	2.77	18,800	0.190	18,800	0%
	Hydro power	MJ	122	6,980	7,100	8.48	7,110	1.10	7,100	0%
	Wind	MJ	126	1,320	1,440	14.4	1,460	1.40	1,440	-1%
	Other	MJ	1.12E-04	1.31E-10	1.12E-04	1.91E-11	1.12E-04	1.79E-12	1.12E-04	0%
Water (consump	tion of surface and grour	nd water)								
	Total	kg	11,000	55,300	66,400	349	66,700	24.1	66,400	0%
	Direct	kg		9,170						

References

APC (2014). National Recycling and Recovery Surveys (NRRS). Paper Packaging, Glass Containers, Steel Cans and Aluminium Packaging. Australian Packaging Covenant. Available: http://www.packagingcovenant.org.au/data/Publications/NRRS_Executive_Summary_2013-14 FINAL.pdf

Australian Government (2018). National Greenhouse Accounts Factors – July 2018. Available: <u>https://www.environment.gov.au/climate-change/climate-science-data/greenhouse-gas-measurement/publications/national-greenhouse-accounts-factors-july-2018</u>

Carre, A. (2011). A Comparative Life Cycle Assessment of Alternative Constructions of a Typical Australian House Design. Melbourne: Forest & Wood Products Australia. Available at http://www.fwpa.com.au/images/marketaccess/PNA147-0809_Research_Report_Comparative-LCA_0.pdf

EPD Australasia (2018). Instructions of the Australasian EPD Programme, Version 3.0, 18-09-2018. Available: <u>https://epd-australasia.com/wp-content/uploads/2018/09/Australasian-Annex-to-GPI 3.0-2018.pdf</u>.

Hyder Consulting Group (2007). Review of Methane Recovery and Flaring from Landfills. Australian Greenhouse Office, Department of Environment and Water Resources.

IEPDS (2015). PCR 2011:05, Tissue Products, Version 2.0, 2015-10-01. Stockholm: International EPD[®] System. Available: <u>http://www.environdec.com/en/PCR/Detail/?Pcr=5966</u>

IEPDS (2017). General Programme Instructions for the International EPD® System, Version 3.0, 2017-12-11. Available: <u>https://www.environdec.com/The-International-EPD-System/General-Programme-Instructions/</u>

IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories - Chapter 4: Biological treatment of solid waste. Intergovernmental Panel on Climate Change.

ISO 14025:2006. Environmental labels and declarations — Type III environmental declarations — Principles and procedures. Geneva: International Organization for Standardization.

MBIE (2018). Data tables for electricity. Ministry of Business, Innovation & Employment. Available: <u>https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/energy-statistics-and-modelling/energy-statistics/electricity-statistics/</u>

PCNZ (2015). Review of packaging mass balance measurements. Packaging Council of New Zealand. Available: <u>http://www.packaging.org.nz/attachments/docs/review-of-packaging-mass-balance-measurements.pdf</u>

thinkstep (2019). GaBi life cycle inventory database documentation. Leinfelden-Echterdingen, Germany: thinkstep AG. Available: <u>http://www.gabi-software.com/support/gabi/gabi-database-2019-lci-documentation/</u>

UNSW (2003). Life Cycle Inventory and Life Cycle Assessment of Windrow Composting Systems. Recycled Organics Unit, the University of New South Wales.

Venelampi, O., Weber, A., Rönkkö, T., & Itävaara, M. (2003). The Biodegradation and Disintegration of Paper Products in the Composting Environment. *Compost Science & Utilization*, 11:3, 200-209.

EPD registration and verification

Declaration owner:		
asaleo care		

EPD produced by:

Asaleo Care Ltd

Web:	http://www.asaleocare.com
Email:	customerservice@asaleocare.com
Post:	30-32 Westall Road, Springvale VIC 3171, Australia

thinkstep Ltd

Web:	www.thinkstep-anz.com
Email:	anz@thinkstep.com
Post:	11 Rawhiti Road, Pukerua Bay 5026, Wellington, New Zealand

EPD programme operator:

thinkstep

EPD Australasia Ltd

Web:	http://www.epd-australasia.com
Email:	info@epd-australasia.com
Post:	315a Hardy Street, Nelson 7010, New Zealand

Product Category Rules (PCR):	PCR 2011:05 Tissue Products, Version 2.0, 2015-10-01
ANZSIC v1.0 classification:	C152400: "Sanitary Paper Product Manufacturing"
UN CPC v2 classification:	32131: "Toilet or facial tissue stock, towel or napkin stock and similar paper, cellulose wadding and webs of cellulose fibres"
PCR review was conducted by:	The Technical Committee of the International EPD [®] System. Chair: Massimo Marino. Contact via <u>info@environdec.com</u> .
Independent verification of the declaration and data, according to ISO 14025:2006:	□ EPD process certification (Internal) □ ☑ EPD verification (External)

Third party verifier:	Andrew D Moore, Life Cycle Logic			
	Web:	http://www.lifecyclelogic.com.au		
	Email:	info@lifecyclelogic.com.au		
Life Cycle Logic	Post:	PO Box 571, Fremantle WA 6959, Australia		
Approved by:	EPD Australasia Ltd			

The EPD owner has the sole ownership, liability and responsibility for the EPD.

