Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for:

Tecdrit (micronized)

from

Anhydritec

Programme: The International EPD® System, www.environdec.com

Programme operator: EPD International AB

EPD registration number: S-P-04919
Publication date: 2021-12-01
Valid until: 2026-11-30

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

EPD Tecdrit 63 grams CO2eq per kg

General information

Programme information

Programme:	The International EPD® System							
	EPD International AB							
Address	Box 210 60							
Address:	SE-100 31 Stockholm							
	Sweden							
Website:	www.environdec.com							
E-mail:	info@environdec.com							

CEN standard EN 15804:A2 serves as the Core Product Category Rules (PCR)
Product category rules (PCR): PCR 2012:01. Construction Products and Construction Services. UN CPC Code: 152 Gypsum; anhydrite; limestone flux; limestone and other calcareous stone, of a kind used for the manufacture of lime or cement
PCR review was conducted by: IVL Swedish Environmental Research Institute
Independent third-party verification of the declaration and data, according to ISO 14025:2006:
☐ EPD process certification ☒ EPD verification
Third party verifier: Dr. Hudai Kara, Metsims Sustainability Consulting [www.metsims.com]
Approved by: The International EPD® System
Procedure for follow-up of data during EPD validity involves third party verifier:
□ Yes ⊠ No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

Company information

Owner of the EPD: Anhydritec UK Ltd. part of the Minersa Group Contact: Kevin Thomas National Sales Manager UK & Ireland

Description of the organisation:

Anhydritec[®] is the business unit of Minersa Group that transforms anhydrite, under the Tecdrit[®] brand name, into a component used in the formulation of adhesive mortars, cements and fertilisers.

Also, under the brands Gyvlon Screed & Gyvlonmobil, anhydrite is used to develop, produce and offer a wide range of anhydrite-based flowing screeds.

Product-related or management system-related certifications:

Anhydritec UK has global policy with regards to management system:

- ISO 9001: 2015:Quality management systems
- ISO 14021:1999: >95% Recycled material used
- ISO14001 Enivromental management systems
- BES 6001 Responsible Sourcing (in progress)

Name and location of production site(s):

Anhydritec Ltd. Winsford works, Cheshire, CW7 3BU, UK

Product information

Product name: Tecdrit

Product identification Synthetic anhydrite

Product description:

Crushed and micronised synthetic anhydrite used as a component in the formulation of adhesive mortars, cements, aerated blocks, inerting, plastics and fertilisers.

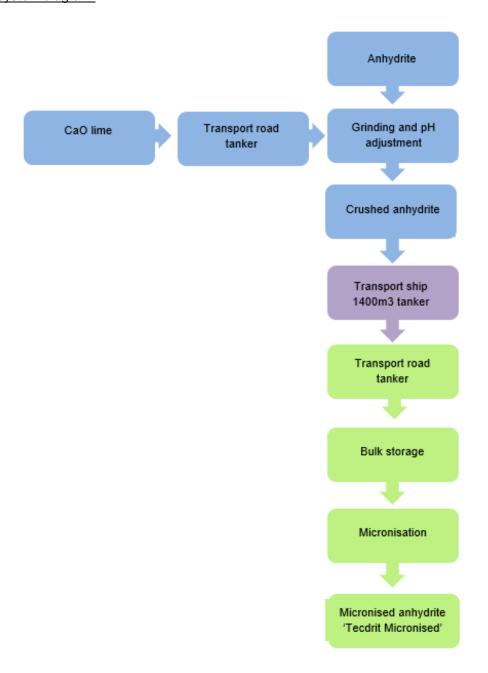
<u>UN CPC code:</u> 152 Gypsum; anhydrite; limestone flux; limestone and other calcareous stone, of a kind used for the manufacture of lime or cement

Other codes for product classification:

EINECS number 231-900-3 CAS number 7778-18-9

REACH registration number 01-2119444918-26

LCA information


Functional unit / declared unit: 1 kg of Tecdrit

Reference service life: N/A Time representativeness: N/A

<u>Database(s)</u> and LCA software used: Ecoinvent 3.7 with Simapro 9.1.0.7.

Description of system boundaries: Cradle to gate (A1-A3)

System diagram:

More information: This EPD is based upon an underlying LCA of the Anhydritec manufacturing process, with operational data obtained for 2019. The underlying LCA was conducted by Dr Callum Hill, senior consultant at Renuables Ltd (http://renuables.co.uk). All relevant inputs and outputs have been considered in the LCA. A standard GB electricity grid mix was used. For indicator values: As per EN 15804:2012+A2:2019. Higher heating value was used for all calculations involving primary energy resources (see www.environdec.com for more information). No cut-off criteria were applied.

This EPD contains information about environmental impact, use of resources and waste production in the form of quantitative indicators. The following abbreviations and have been used in the tables which quantify environmental performance:

Indicator	Abbreviation
Global warming potential (Fossil, biogenic, land use and transformation (LUT))	GWP
Depletion potential of the stratospheric ozone layer	ODP
Acidification potential	AP
Eutrophication potential	EP
Formation potential of tropospheric ozone	POCP
Abiotic depletion potential – Elements	ADPE
Abiotic depletion potential – Fossil resources	ADPF
Water scarcity potential	WSP
Primary energy resources – Renewable (use as energy carrier)	PERE
Primary energy resources – Renewable (use raw materials)	PERM
Primary energy resources – Renewable (total)	PERT
Primary energy resources – Non-renewable (use as energy carrier)	PENRE
Primary energy resources – Non-renewable (use raw materials)	PENRM
Primary energy resources – Non-renewable (total)	PENRT
Secondary material	SM
Renewable secondary fuels	RSF
Non-renewable secondary fuels	NRSF
Net use of fresh water	NUFW
Hazardous waste disposed	HWD
Non-hazardous waste disposed	NHWD
Radioactive waste disposed	RWD
Components for re-use	CFR
Material for recycling	MFR
Materials for energy recovery	MFER
Exported energy, electricity	EE-E
Exported energy, thermal	EE-T

Modules declared, geographical scope, share of specific data (in GWP-GHG indicator) and data variation:

	Pro	duct sta	age	prod	ruction cess ige			Us	se sta	ge			Er	nd of li	fe sta	ge	Resource recovery stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A1	A2	А3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	D
Modules declared	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Geographical Scope

Europe

Content information

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Gypsum	0.98	0	0
Additives	0.02	0	0
TOTAL	1	0	0
Packaging materials	Weight, kg	Weight-% (versus the prod	duct)
None	0	0	

Dangerous substances from the candidate list of SVHC for Authorisation	EC No.	CAS No.	Weight-% per functional or declared unit
None	N/A	N/A	N/A

Environmental Information

Potential environmental impact – mandatory indicators according to EN 15804

		R	esults	s per	kg of	Tecdi	it (mi	croni	zed)							
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
GWP-fossil	kg CO ₂ eq.	6.48E-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GWP-biogenic	kg CO ₂ eq.	2.80E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GWP-luluc	kg CO ₂ eq.	3.08E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
GWP-total	kg CO ₂ eq.	6.48E-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ODP	kg CFC 11 eq.	7.66E-09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AP	mol H⁺ eq.	5.69E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EP-freshwater	kg PO ₄ ³⁻ eq.	6.49E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EP-marine	kg N eq.	1.23E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EP-terrestrial	mol N eq.	1.41E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
POCP	kg NMVOC eq.	3.79E-04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ADPE*	kg Sb eq.	5.64E-08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ADPF*	MJ	6.83E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
WDP	m ³	5.19E-03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Use of resources

		R	esults	s per	kg of	Tecdr	it (mi	croni	zed)							
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
PERE	MJ	6.56E-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PERM	MJ	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PERT	MJ	6.56E-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PENRE	MJ	7.60E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PENRM	MJ.	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PENRT	MJ	7.60E-01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SM	kg	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
RSF	MJ	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NRSF	MJ	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FW	m³	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Waste production and output flows

Waste production

		R	esults	s per	kg of	Tecdr	it (mi	croni	zed)							
Indicator	Unit	Tot.A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	C3	C4	D
HWD	kg	5.98E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NHWD	kg	1.15E-02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
RWD	kg	4.71E-06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Output flows

		R	esults	s per	kg of	Tecdi	it (mi	croni	zed)							
Indicator	Unit	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
CFR	kg	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MFR	kg	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MFER	kg	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EE-E	MJ	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
EE-T	MJ	0.00E+00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Additional information

None

Information related to Sector EPD

N/A

Differences versus previous versions

N/A.

References

General Programme Instructions of the International EPD® System. Version 3.01.

PCR 2012:01. Construction Products and Construction Services.

EN 13813 Screed material and floor screeds. Screed material. Properties and requirements.

EN 15804:2012+A2:2019, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products.

