ENVIRONMENTAL PRODUCT DECLARATION

According to ISO 14025 and EN 15804

Registered under the scope of mutual recognition between The International EPD[®] System and The Norwegian EPD Foundation

Program operator: The Norwegian EPD Foundation Publisher: International EPD[®] System Declaration number: NEPD-2825-1520-EN Registration number: S-P-03792 Issue date: 2021-05-05 Valid to: 2026-05-05

Hydro coil-coated and mill-finish aluminium rolled products based on scrap containing alloys, with an approximate average content of 40 % postconsumer scrap Hydro Aluminium Rolled Products AS

General information

Product:

Hydro coil-coated and mill-finish aluminium rolled products based on scrap containing alloys, with an approximate average content of 40 % post-consumer scrap.

Program operator:

The Norwegian EPD FoundationPb. 5250 Majorstuen, 0303 OsloPhone:+47 23 08 80 00e-mail:post@epd-norge.no

Declaration number:

NEPD-2825-1520-EN

ECO Platform reference number:

Owner of the declaration:

Hydro Aluminium Rolled Products AS Contact person: Tom Muggerud Phone: +47 90 60 21 63 e-mail: tom.muggerud@hydro.com

Manufacturer:

Hydro Alumium Rolled Products AS Weidemannsgate 8, N-3080 Holmestrand e-mail: <u>greener.rmh@hydro.com</u>

Place of production:

Holmestrand

Management system:

ISO 14001, ISO 9001

Organisation no:

975,934,578

Issue date:

05.05.2021

Valid to:

05.05.2026

Year of study:

2020

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

The EPD has been worked out by:

Irmeline de Sadeleer, Andreas Brekke, Kari-Anne Lyng, Gaylord K. Booto

NORSUS

Approved

Håkon Hauan Managing Director of EPD-Norway

This declaration is based on Product Category Rules: CEN Standard EN 15804 serves as core PCR

NPCR 013, "Version 3.0 Part B for steel and aluminium construction products"

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturerinformation, life cycle assessment data and evidences.

Declared unit:

1 kg of Hydro coated and mill-finish aluminium rolled products, scrap containing alloys, produced at Holmestrand

Declared unit with option:

1 kg of Hydro coated and mill-finish aluminium rolled products, scrap containing alloys, produced at Holmestrand, including waste handling and possible environmental benefits after end of life.

Functional unit:

The product is an input to several products. No use scenarios are defined, hence no functional unit.

Verification:

The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010

internal

x

Third party verifier: Jane Anderron

Jane Anderson, ConstructionLCA Ltd (Independent verifier approved by EPD Norway)

external

Product

Product description:

This EPD covers coil-coated and mill-finish aluminium rolled products, with an approximate average content of 40% post-consumer scrap. It is valid for flat rolled products (coil, sheet and strip).

Exampe of applications:

Examples of market sectors: Building and Construction, General Engineering, Automotive and Transportation, Consumer Goods, Domestic Applliances and Food Packaging.

Product specification:

Typical content of the Aluminium Products:

Materials	kg	%
Scrap from external sources	0.4	0.4
Scrap from internal sources	0.438	0.438
Primary Metal from external sources	0.187	0.187
Alloying Elements	0.015	0.015

Technical data:

Our scrap containing alloys in the 3000-series have been developed by Hydro Holmestrand since the early 1990's. We offer flat rolled products in two alloys with an approximate average of 40% post-consumer scrap (based on previous production years): EN AW-3005A and EN AW-3105B.

Both alloys offer excellent fomability, strength and corrosion reistance.

For more information, contact your local Hydro sales office or go to https://www.hydro.com/en/about-hydro/hydroworldwide/europe/norway/holmestrand/hydro-aluminium-rolledproducts-as-holmestrand/

Typical Material Properties 6082

Mechanical properties vary according to the specific thermomechanical processing. Alloy and temper should be specified according to norms EN 485-2 or EN 1396. Specific customer requirements can also be agreed in discussion with our technical team.

Technical data sheets can be provided by our sales team. Our team of technical experts is ready to help you choose the right alloy and temper.

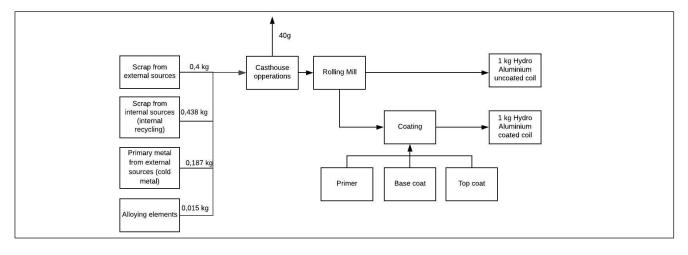
Reference service life, product:

Depends on product application, but the material itself has an infinite life time.

Market: Global

LCA: Calculation rules

Declared unit:


1 kg of Hydro aluminium 40% scrap product. The EPD also covers modules C2-C4 and D.

The Hydro aluminium 40% scrap Product is produced Holmestrand. The results are based on the production volumes of 2019.

System boundary:

Cradle to gate with options. The following stages have been declared: A1-A4, C2-C4 and D. Further specificed in flow sheet below.

Module D covers the potential benefits from recycling of Hydro Aluminium 40% Scrap after end of useful life. Module D covers all necessary stages from C3 until the aluminium is back to the market and compares to the environmental performance of an average market forge ingot. The module is further specified under scenarios.

Data quality:

Specific data were used for all of Hydro's processes, based on the production year 2019, and were collected for the entire year 2019. As Hydro has ownership in a total value chain, all stages from A1 to A4 are covered by specific data. Background data on for instance transport and electricity production are from ecoinvent 3.6 (2020).

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy, water and waste production inhouse are allocated equally among all products through mass allocation. For almost all processes, detailed data are provided for each step, and the main allocation is done between aluminium hydroxide and aluminium oxide in the production of alumina. Effects of primary production of recycled materials are allocated to the main product in which the material was used. The recycling process and transportation of the material are allocated to this analysis.

Cut-off criteria:

All major raw materials and all the essential energy flows were included. The production processes for raw materials and energy flows with very small amounts (<1%) were not included in this analysis. This cut-off rule does not apply to hazardous materials and substances, but mostly to alloying elements that are added in less than per thousandth.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

The transport from the Holmestrand production site to the average market location in Europe with a combination of lorry, ship, and train. The average distance is 1220 km split on the three transport modes according to the average use of each one.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl.	Type of vehicle	Distance km	Fuel/Energy
	return) %			consumption
Truck	50	Lorry, >32 metric tons, Euro V	899	1.6E-02 l/tkm
Boat	80	Cargo ship, 5000 tons	168	1.1E-02 l/tkm
Train	50	Freight train	153	0.30 ML/tkm

The aluminium goes predominantly to four different markets with different market shares to each of them. The four markets are: Construction (96%), Automotive (95%), Household appliances (75%), and Packaging (65%). The numbers in parentheses are collection rates found by European Aluminium for the different markets. Due to the different market shares, the resulting average collection rate is 92.6%. Aluminium that is not collected for recycling is assumed to go to either incineration or landfill. A 50/50 split is employed. In the handling phase (sorting and shredding), there is another loss of 2.7% of the stream going to recycling.

End of Life (C2, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	-
Collected	kg	0.926
Reuse	kg	-
Recycling	kg	0.901
Energy recovery	kg	0.037
To landfill	kg	0.064

* 37 grams of the original 1 kg of aluminium is going to incineration. No loads or beneifts are attribuded to this flow.

**There will be a small portion of aluminium ending as uncollected. This is included under "To landfill" where no loads or benefits are included.

Transport to waste processing (C2)

Туре	Capacity utilisation (incl.	Type of vehicle	Distance km	Fuel/Energy
Truck	40	Lorry, >32 metric tons, Euro V	269	2.4E-02 l/tkm
Boat	80	Sea, transoceanic ship	471	1.2E-02 l/tkm

Aluminium from the shredder to waste handling site is assumed to be transported in an older medium-sized lorry with smaller capacity utilization than in the production system.

Benefits and loads beyond the system boundaries (D)

	Unit	Value
Aluminium foundry alloy to recycling	g	501

Aluminium collected and recycled is assumed to replace an average extrusion ingot in Europe consisting of 40% recycled and 60% primary aluminium. This is a conservative approach.

LCA: Results

All results are calculated with the use of SimaPro v.9 (2019) and impact methods according to EN 15804.

Syste	System boundaries (X=included, MND= module not declared, MNR=module not relevant)															
Pro	duct st	age	Assem	nby stage		Use stage						End of life stage			Beyond the system boundaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	СЗ	C4	D
x	x	x	x	MND	MND	MND	MND	MND	MND	MND	MND	MND	x	x	x	x

Environme	Environmental impact										
Parameter	Unit	A1-A3 (uncoated)	A1-A3 (coated)	A4	C2	C3	C4		D		
GWP	kg CO ₂ -eqv	3.35E+00	3.60E+00	9.00E-02	7.79E-03	2.38E-01	0.00E+00		-2.86E+00		
ODP	kg CFC11-eqv	2.40E-07	4.09E-07	1.74E-08	1.39E-09	9.06E-09	0.00E+00		-2.26E-07		
POCP	kg C ₂ H ₄ -eqv	1.90E-03	2.17E-03	1.38E-05	1.06E-06	3.21E-05	0.00E+00		-1.40E-03		
AP	kg SO ₂ -eqv	2.47E-02	2.55E-02	3.56E-04	3.06E-05	6.80E-04	0.00E+00		-1.65E-02		
EP	kg PO₄ ³⁻ -eqv	1.76E-03	1.87E-03	5.61E-05	5.34E-06	6.90E-05	0.00E+00		-1.24E-03		
ADPM	kg Sb-eqv	1.68E-04	1.69E-04	1.46E-06	2.10E-07	3.98E-06	0.00E+00		9.21E-07		
ADPE	MJ	3.15E+01	3.67E+01	1.50E+00	1.22E-01	1.27E+00	0.00E+00		-3.02E+01		

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource u	Jse							
Parameter	Unit	A1-A3 (uncoated)	A1-A3 (coated)	A4	C2	C3	C4	D
RPEE	MJ	2.21E+01	2.32E+01	2.68E-02	1.42E-03	1.83E-01	0.00E+00	-1.25E+01
RPEM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TPE	MJ	2.21E+01	2.32E+01	2.68E-02	1.42E-03	1.83E-01	0.00E+00	-1.25E+01
NRPE	MJ	3.62E+01	4.15E+01	1.47E+00	1.18E-01	1.41E+00	0.00E+00	-3.56E+01
NRPM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
TRPE	MJ	3.62E+01	4.15E+01	1.47E+00	1.18E-01	1.41E+00	0.00E+00	-3.56E+01
SM	kg	4.00E-01	6.81E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
W	m ³	9.05E-02	7.91E-02	2.00E-04	1.28E-05	7.39E-04	0.00E+00	-6.82E-02

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste

Parameter	Unit	A1-A3 (uncoated)	A1-A3 (coated)	A4	C2	C3	C4	D
HW	kg	1.40E-04	3.56E-04	3.35E-06	3.10E-07	5.95E-03	0.00E+00	-1.21E-03
NHW	kg	3.91E+00	3.98E+00	1.20E-01	6.35E-03	1.14E+00	1.28E-01	-1.44E+00
RW	kg	1.46E-04	1.57E-04	1.00E-05	7.82E-07	4.19E-06	0.00E+00	-1.46E-04

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow

End of life	- Output now							
Parameter	Unit	A1-A3 (uncoated)	A1-A3 (coated)	A4	C2	C3	C4	D
CR	kg	-	-	-	-	-	-	-
MR	kg	-	-	-	-	9.01E-01	-	5.01E-01
MER	kg	-	-	-	-	6.20E-02	-	-
EEE	MJ	-	-	-	-	-	-	-
ETE	MJ	-	-	-	-	-	-	-

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9.0 \text{ E}-03 = 9.0^{*}10^{-3} = 0.009$

Additional Norwegian requirements

Greenhouse gas emission from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing prosess (A3).

Data source	Amount	Unit
econinvent v3.6 (2020)	30.3	g CO ₂ -eqv/kWh

Dangerous substances

x The product contains no substances given by the REACH Candidate list or the Norwegian priority list

The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0.1 % by weight.

The product contain dangerous substances, more than 0.1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.

The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Name	CAS no.	Amount
Not relevant		

Indoor environment

Not relevant

Carbon footprint

Calculations connected to climate change and global warming potential (GWP) include greenhouse gas emissions from fossil sources and land use change connected to extraction of bauxite, but does not include calculations of biogenic emissions of CO₂.

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
NPCR 013	NPCR 013 version 3.0 Part B for steel and aluminium construction products.
Sadeleer, I., Brekke, A. and Booto, G. (2020)	Background report for the Environmental Product Declarations for Hydro Aluminium Holmestrand: Three rolled products with 0%, 40%, 75, 85 and 95% recycled aluminium. Coated and uncoated

	Program operator	Phone:	+47 23 08 80 00
epd-norge.no	The Norwegian EPD Foundation	Thome.	147 20 00 00 00
Cpd noige.no	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
The Norwegian EPD Foundation	Norway	web	www.epd-norge.no
	Publisher	Phone:	+47 23 08 82 92
epd-norge.no	The Norwegian EPD Foundation		
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail:	post@epd-norge.no
®	Norway	web	www.epd-norge.no
)))) Hydro	Owner of the declaration	Phone:	+47 90 60 21 63
	Hydro Aluminium Rolled Products AS	Fax	
	Weidemannsgate 8	e-mail:	greener.rmh@hydro.com
	N-3080 Holmestrand	web	www.hydro.com
NORSUS	Author of the Life Cycle Assessment	Phone:	+47 69 35 11 00
	NORSUS AS	Fax	+47 69 34 24 94
	Stadion 4	e-mail:	<u>post@norsus.no</u>
	1671 Kråkerøy	web	www.norsus.no