

Environmental Product Declaration

In accordance with ISO 14025 for:

ARPRO expanded polypropylene from JSP

Programme:	The International EPD® System, www.environdec.com
Programme operator:	EPD International AB
EPD registration number:	S-P-02142
Publication date:	2021-02-01
Revision date:	2022-05-16
Valid until:	2026-01-31

NOT APPLICABLE FOR ANY EPP OTHER THAN ARPRO

Contents

Programme information	3
Company information / Product information	4
LCA information	5
Content declaration	6
Environmental performance	
Virgin material:	
ARPRO Grades	
Potential environmental impacts	7
Use of resources	8
Waste production / Output flows	9
Material with recycled content:	
ARPRO Ocean	
Potential environmental impacts	10
Use of resources	11
Waste production / Output flows	12
ARPRO RE	
Potential environmental impacts	13
Use of resources	14
Waste production / Output flows	15
ARPRO REvolution	
Potential environmental impacts	16
Use of resources	17
Waste production / Output flows	18
Additional information	19
Verification related information	20
Mandatory statements / Contact information / References	21

Version 02

This information is provided as a convenience to customers and reflects the results of internal tests conducted on ARPRO samples. While all reasonable care has been taken to ensure that this information is accurate as of the date of issue, JSP does not represent, warrant or otherwise guarantee, expressly or impliedly, the suitability, accuracy, reliability or completeness of the information. ARPRO is a registered trade mark.

Programme information

The International EPD® System

EPD International AB Box 210 60 SE-100 31 Stockholm Sweden

www.environdec.com | info@environdec.com

Product category rules (PCR):	Plastics in primary forms, 2010:16, version 3.01, UN CPC 347
PCR review was conducted by:	Paola Borla
Independent third-party verification of the declaration and data, according to ISO 14025:2006:	EPD process certification EPD verification
Third party verifier:	Hüdai Kara, PhD. Metsims Sustainability Consulting, www.metsims.com
Approved by:	The International EPD® System
Procedure for follow-up of data during EPD validity involves third party verifier:	Yes No

The EPD owner has the sole ownership, liability and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable.

Company information

- Owner of the EPD: JSP | www.ARPRO.com | sustainability@jsp.com
- **Description of the organisation:** JSP Corporation is the world's largest producer of expanded polypropylene. The company has research and development and manufacturing facilities in the major industrial centres of Americas, Europe and Asia.
- Product-related or management system-related certifications: ISO 9001:2015 and 14001:2015
- Name and location of production site: JSP Estrées-Saint-Denis (France), JSP Cheb (Czech Republic)

Product information

• Product name: ARPRO

• Product identification: Expanded polypropylene

- **Product description:** ARPRO is a closed-cell bead foam material with a unique combination of properties. It delivers excellent energy absorption and structural strength. It can withstand multiple impacts, is thermally insulated, buoyant, water and chemical resistant. ARPRO has an exceptionally high strength to weight ratio and is 100% recyclable.
- ARPRO is an ideal material for the production of safety components in automotive applications, multi-use
 transport packaging (dunnage), HVAC housings, food delivery containers and thermo boxes, products
 for sports and leisure, furniture, toys, domestic appliance and many more. It is suitable for food contact.
- ARPRO is offered in a wide range of bulk densities from 16 to 200 g/l. Using steam-chest moulding, it can be processed into almost any desired shape of foam parts.
- ARPRO manufacturing is a clean process, it does not use any halogenated hydrocarbons or compounds damaging the environment and has low volatile organic emissions.

UN CPC code: 347

Geographical scope: Global

End-of-life

LCA information

JSP is committed to reduce the environmental impact of its production. As a result of optimising processes, carbon footprint coming from the ARPRO production has been significantly reduced.

- Functional unit / declared unit: 1kg of product
- **Time Parameters:** The study is based on data representing year-round production. The data is from 2021.
- Database(s) and LCA software used: Professional database of thinkstep, GaBi software
- Description of system boundaries: Cradle-to-gate with options
- Excluded lifecycle stages: Use stage, final disposal
- · More information: sustainability@jsp.com

packaging

Waste treatment of

up-stream processes

Core module **Upstream module** Downstream module **Extraction and** processing of raw Transport of all materials, additives input materials and chemicals Transport to the customers **Production of energy** and fuel products **ARPRO** production and packaging **Production of** ARPRO packaging

System diagram

Version 02

Waste treatment of

core processes

This information is provided as a convenience to customers and reflects the results of internal tests conducted on ARPRO samples. While all reasonable care has been taken to ensure that this information is accurate as of the date of issue, JSP does not represent, warrant or otherwise guarantee, expressly or impliedly, the suitability, accuracy, reliability or completeness of the information. ARPRO is a registered trade mark.

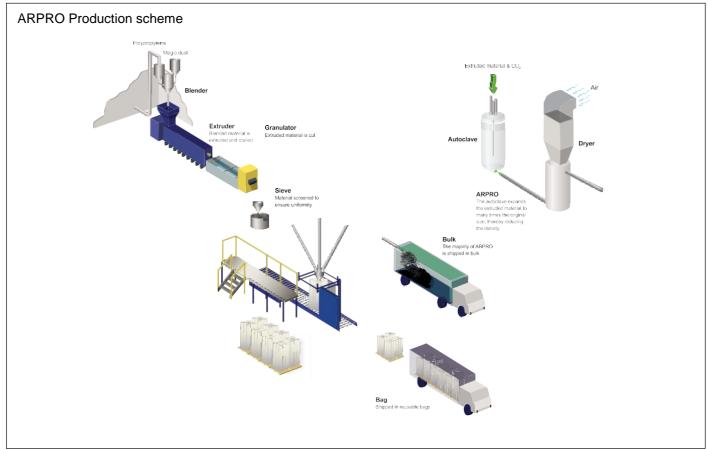
6

Content declaration

ARPRO | ARPRO 35 Ocean | ARPRO RE | ARPRO REvolution

Materials / chemical substances	[Unit]	%	Environmental / hazardous properties
Expanded polypropylene	1 kg	100	NA / no hazardous properties known

No substances included in the Candidate List of Substances of Very High Concern for authorisation under the REACH Regulations are present in the ARPRO products, either above the threshold for registration with the European Chemicals Agency or above 0.1% (w/w).


Packaging

Distribution packaging: PP big-bags, PP nets **Consumer packaging:** No consumer packaging

Recycled material

Provenance of recycled materials (pre-consumer or post-consumer) in the product: Almost 100% end-of life recycled expanded polypropylene is used in ARPRO Revolution. 25% end-of life recycled expanded polypropylene is used in ARPRO Recycled. The ARPRO 35 Ocean product uses 15% recycled plastic, which was obtained by collecting maritime industry waste. There is no recycled material in the ARPRO product; 100% polypropylene is virgin.

Production flow-chart of JSP International

Version 02

This information is provided as a convenience to customers and reflects the results of internal tests conducted on ARPRO samples. While all reasonable care has been taken to ensure that this information is accurate as of the date of issue, JSP does not represent, warrant or otherwise guarantee, expressly or impliedly, the suitability, accuracy, reliability or completeness of the information. ARPRO is a registered trade mark.

EPD EPD

Virgin material

ARPRO Grades - Potential environmental impacts, 1 kg

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
	Fossil	kg CO ₂ eq.	1.90	0.21	0.032	2.14
Global	Biogenic	kg CO₂eq.	0.015	0.0075	-5.02E-05	0.022
warming potential (GWP)	Land use and land transformation	kg CO₂eq.	1.07E-3	1.47E-06	1.75E-4	1,25E-3
	TOTAL	kg CO₂eq.	1.91	0.22	0.032	2.16
Depletion potent		kg CFC 11 eq.	4.14E-10	2.47E-15	3.23E-15	4.14E-10
Acidification pote	ential (AP)	kg SO₂eq.	0.0046	4.07E-06	2.35E-05	0.0047
Eutrophication p	otential (EP)	kg PO ₄ 3- eq.	0.0020	9E-06	6E-06	0.0020
Eutrophication, f	reshwater (EP)	kg P eq.	6.04E-05	2.24E-07	2.14E-07	6.09E-05
Formation potentropospheric ozo		kg C₂H₄ eq.	8.29E-4	5.01E-06	1.00E-07	8.34E-4
Abiotic depletion Elements	potential –	kg Sb eq.	5.19E-07	1.06E-10	2.67E-09	5.21E-07
Abiotic depletion potential – Fossil resources		MJ, net calorific value	76.72	0.018	0.42	77.16
Water scarcity p	otential	m³ eq.	1.58	0.17	2.75E-4	1.75

Virgin material

ARPRO Grades - Use of resources, 1 kg

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
Primary	Use as energy carrier	MJ, net calorific value	14.84	0.0017	0.025	14.87
energy resources	Used as raw materials	MJ, net calorific value	0	0	0	0
Renewable	TOTAL	MJ, net calorific value	14.84	0.0017	0.025	14.87
Primary	Use as energy carrier	MJ, net calorific value	77.04	0.018	0.43	77.49
energy resources – Non-	Used as raw materials	MJ, net calorific value	0	0	0	0
renewable	TOTAL	MJ, net calorific value	77.39	0.018	0.43	77.84
Secondary mate	erial	kg	0	0	0	0
Renewable secondary fuels		MJ, net calorific value	0	0	0	0
Non-renewable secondary fuels		MJ, net calorific value	0	0	0	0
Net use of fresh	water	m³	0.048	0.0039	2.71E-05	0.051

Virgin material

ARPRO Grades - Waste production, 1 kg

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Hazardous waste disposed	kg	1.97E-06	0	3.43E-12	1.97E-06
Non-hazardous waste disposed	kg	0.0071	0.02	0.0091	0.037
Radioactive waste disposed	kg	-0.00057	2.18E-07	6.30E-07	-0.00057

ARPRO Grades - Output flows, 1 kg

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Components for reuse	kg	0	0	0	0
Material for recycling	kg	0	0.0031	0	0.0031
Materials for energy recovery	kg	0	0	0	0
Exported energy, electricity	MJ	0	0.0022	0	0.0022
Exported energy, thermal	MJ	0	0	0	0

Material with 15% recycled content

ARPRO Ocean - Potential environmental impacts, 1 kg

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
	Fossil	kg CO ₂ eq.	1.74	0.21	0.032	1.98
Global	Biogenic	kg CO₂eq.	0.016	0.0075	-5.02E-05	0.023
warming potential (GWP)	Land use and land transformation	kg CO₂eq.	0.0011	1.47E-06	0.00017	0.0013
	TOTAL	kg CO₂eq.	1.76	0.22	0.032	2.01
Depletion potent		kg CFC 11 eq.	4.12E-10	2.47E-15	3.23E-15	4.12E-10
Acidification pote	ential (AP)	kg SO₂eq.	0.0042	4.07E-06	2.35E-05	0.0042
Eutrophication p	otential (EP)	kg PO ₄ ³- eq.	0.0017	8.71E-06	6.10E-06	0.0018
Eutrophication fr	eshwater (EP)	kg P eq.	5.37E-05	2.24E-07	2.14E-07	5.42E-05
Formation potentropospheric ozo		kg C₂H₄ eq.	0.00073	5.01E-06	1.00E-07	0.00074
Abiotic depletion Elements	potential –	kg Sb eq.	5.09E-07	1.06E-10	2.67E-09	5.12E-07
Abiotic depletion Fossil resources	•	MJ, net calorific value	67.76	0.018	0.42	68.2
Water scarcity p	otential	m³ eq.	1.38	0.17	0.00028	1.55

11

Environmental performance

Material with 15% recycled content

ARPRO Ocean - Use of resources, 1 kg

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
Primary	Use as energy carrier	MJ, net calorific value	14.59	0.0017	0.025	14.62
energy resources	Used as raw materials	MJ, net calorific value	0	0	0	0
Renewable	TOTAL	MJ, net calorific value	14.59	0.0017	0.025	14.62
Primary	Use as energy carrier	MJ, net calorific value	68.22	0.019	0.43	68.66
energy resources – Non-	Used as raw materials	MJ, net calorific value	0	0	0	0
renewable	TOTAL	MJ, net calorific value	68.22	0.018	0.43	68.66
Secondary mate	erial	kg	0.081	0	0	0.081
Renewable secondary fuels		MJ, net calorific value	0	0	0	0
Non-renewable secondary fuels		MJ, net calorific value	0	0	0	0
Net use of fresh	water	m³	0.042	0.0039	2.71E-05	0.046

12

Environmental performance

Material with 15% recycled content

ARPRO Ocean - Waste production, 1 kg

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Hazardous waste disposed	kg	1.97E-06	0	3.43E-12	1.97E-06
Non-hazardous waste disposed	kg	0.013	0.020	0.0091	0.043
Radioactive waste disposed	kg	-0.00043	2.18E-07	6.30E-07	-0.00043

ARPRO Ocean - Output flows, 1 kg

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Components for reuse	kg	0	0	0	0
Material for recycling	kg	0	0.0031	0	0.0031
Materials for energy recovery	kg	0	0	0	0
Exported energy, electricity	MJ	0	0.0022	0	0.0022
Exported energy, thermal	MJ	0	0	0	0

Material with 25% recycled content

ARPRO RE - Potential environmental impacts, 1 kg

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
	Fossil	kg CO ₂ eq.	1.66	0.21	0.032	1.90
Global	Biogenic	kg CO ₂ eq.	0.016	0.0075	-5.02E-05	0.024
warming potential (GWP)	Land use and land transformation	kg CO₂eq.	0.0011	1.47E-06	0.00018	0.0013
	TOTAL	kg CO₂eq.	1.68	0.22	0.032	1.93
Depletion potent		kg CFC 11 eq.	4.11E-10	2.47E-15	3.23E-15	4.11E-10
Acidification pote	ential (AP)	kg SO ₂ eq.	0.0039	4.07E-06	2.35E-05	0.0039
Eutrophication p	otential (EP)	kg PO ₄ ³- eq.	0.0016	8.71E-06	6.10E-06	0.0016
Eutrophication fr	reshwater (EP)	kg P eq.	4.96E-05	2.24E-07	2.14E-07	5.00E-05
Formation potentropospheric ozo		kg C₂H₄ eq.	0.00067	5.01E-06	1.00E-07	0.00067
Abiotic depletion Elements	n potential –	kg Sb eq.	5.06E-07	1.06E-10	2.67E-09	5.09E-07
Abiotic depletion Fossil resources		MJ, net calorific value	61.81	0.018	0.42	62.25
Water scarcity p	otential	m³ eq.	1.25	0.17	0.00028	1.41

Material with 25% recycled content

ARPRO RE - Use of resources, 1 kg

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
Primary	Use as energy carrier	MJ, net calorific value	14.66	0.0017	0.025	14.69
energy resources	Used as raw materials	MJ, net calorific value	0	0	0	0
Renewable	TOTAL	MJ, net calorific value	14.66	0.0017	0.025	14.69
Primary	Use as energy carrier	MJ, net calorific value	62.49	0.0185	0.43	62.93
energy resources - Non- renewable	Used as raw materials	MJ, net calorific value	0	0	0	0
	TOTAL	MJ, net calorific value	62.76	0.018	0.43	63.2
Secondary mate	erial	kg	0.23	0	0	0.23
Renewable secondary fuels		MJ, net calorific value	0	0	0	0
Non-renewable secondary fuels		MJ, net calorific value	0	0	0	0
Net use of fresh	water	m³	0.039	0.0039	2.71E-05	0.043

15

Environmental performance

Material with 25% recycled content

ARPRO RE - Waste production, 1 kg

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Hazardous waste disposed	kg	1.97E-06	0	3.43E-12	1.97E-06
Non-hazardous waste disposed	kg	0.037	0.020	0.0091	0.067
Radioactive waste disposed	kg	-0.00028	2.18E-07	6.30E-07	-0.00028

ARPRO RE - Output flows, 1 kg

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Components for reuse	kg	0	0	0	0
Material for recycling	kg	0	0.0031	0	0.0031
Materials for energy recovery	kg	0	0	0	0
Exported energy, electricity	MJ	0	0.0022	0	0.0022
Exported energy, thermal	MJ	0	0	0	0

Material with close to 100% recycled content

ARPRO REvolution - Potential environmental impacts, 1 kg

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
	Fossil	kg CO ₂ eq.	0.96	0.21	0.032	1.20
Global	Biogenic	kg CO₂eq.	0.020	0.0075	-5.02E-05	0.028
warming potential (GWP)	Land use and land transformation	kg CO₂eq.	0.0013	1.47E-06	0.00017	0.0019
	TOTAL	kg CO₂eq.	0.98	0.22	0.032	1.23
Depletion potenti stratospheric oz	tial of the one layer (ODP)	kg CFC 11 eq.	4.01E-10	2.47E-15	3.23E-15	4.01E-10
Acidification pote	ential (AP)	kg SO ₂ eq.	0.0014	4.07E-06	2.35E-05	0.0014
Eutrophication p	otential (EP)	kg PO ₄ ³- eq.	0.0004	8.71E-06	6.10E-06	0.00042
Eutrophication fi	reshwater (EP)	kg P eq.	1.58E-05	2.24E-07	2.14E-07	1.62E-05
Formation potentropospheric ozo		kg C₂H₄ eq.	0.00017	5.01E-06	1.00E-07	0.00018
Abiotic depletion Elements	n potential –	kg Sb eq.	4.69E-07	1.06E-10	2.67E-09	4.72E-07
Abiotic depletion potential – Fossil resources		MJ, net calorific value	15.44	0.018	0.42	15.88
Water scarcity p	otential	m³ eq.	0.20	0.15	0.00028	0.35

Material with close to 100% recycled content

ARPRO REvolution - Use of resources, 1 kg

PARAMETER		UNIT	Upstream	Core	Downstream	TOTAL
Primary	Use as energy carrier	MJ, net calorific value	14.11	0.0017	0.025	14.14
energy resources	Used as raw materials	MJ, net calorific value	0	0	0	0
Renewable	TOTAL	MJ, net calorific value	14.11	0.0017	0.025	14.14
Primary	Use as energy carrier	MJ, net calorific value	17.23	0.019	0.43	17.68
energy resources - Non- renewable	Used as raw materials	MJ, net calorific value	0	0	0	0
	TOTAL	MJ, net calorific value	17.25	0.018	0.43	17.70
Secondary mate	erial	kg	0.96	0.96	0	0.96
Renewable secondary fuels		MJ, net calorific value	0	0	0	0
Non-renewable secondary fuels		MJ, net calorific value	0	0	0	0
Net use of fresh	water	m³	0.012	0.0034	2.71E-05	0.016

Material with close to 100% recycled content

ARPRO REvolution - Waste production, 1 kg

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Hazardous waste disposed	kg	1.97E-06	0	3.43E-12	1.97E-06
Non-hazardous waste disposed	kg	0.13	0.020	0.0091	0.16
Radioactive waste disposed	kg	0.00064	2.18E-07	6.30E-07	0.00064

ARPRO REvolution - Output flows, 1 kg

PARAMETER	UNIT	Upstream	Core	Downstream	TOTAL
Components for reuse	kg	0	0	0	0
Material for recycling	kg	0	0.0031	0	0.0031
Materials for energy recovery	kg	0	0	0	0
Exported energy. electricity	MJ	0	0.0022	0	0.0022
Exported energy. thermal	MJ	0	0	0	0

Additional information

- JSP is the first EPP supplier incorporating up to 25% recycled content in the product to produce ARPRO Recycled. This helps to reduce the amount of plastic waste that pollutes our environment and conserves resources.
- ARPRO 35 Ocean is made from 15% recycled maritime industry waste content. It has comparable
 physical properties and performance to ARPRO made from new material.
- ARPRO REvolution is the first EPP made with close to 100% recycled content. It is perfectly targeted for non-technical application such as packaging, leisure and furniture applications.
- ARPRO ESDP (electrostatic discharge protection) is ideal for the protection of electro-sensitive goods.
 ARPRO ESDP dissipates the electrical charge, therefore protecting goods packed with this material.
- ARPRO Porous provides energy absorption and has the ability to absorb and dampen sounds over a 400 to 10,000Hz frequency range.
- ARPRO FR (fire retardant) reduces flammability and delays combustion. It is self-extinguishing without the use of environmentally harmful halogenated chemicals.
- The on-site expansion grades allow for the material to be shipped at its bulk density and then expanded at the moulding site. This results in transport cost savings and efficient moulding due to tailored densities.
- ARPRO Colours ARPRO is offered in five vibrant colours: Blueberry, Dragon Fruit, Orange, Lemon and Lime.
- JSP is committed to reduce the environmental impact of its production. As a result of optimizing processes, carbon footprint coming from the ARPRO production has been reduced by 52% over the last 10 years.
- Electricity for ARPRO production is only purchased from renewable sources. JSP is looking to reduce the ARPRO carbon footprint further and actively participates in the development of Green Energy.

Verification related information

See PCR for detailed requirements.

Published:	2022-05-16
Valid until:	2026-01-31
Product Category Rules:	Plastics in primary forms, 2010:16, version 3.01, UN CPC 347
Product group classification:	UN CPC 347, Plastics in primary forms
Reference year for data:	2021
Geographical scope:	Europe, Global

Independent verification of the declaration and data, according to ISO 14025:2006:

EPD Process Certification (internal)

Third-party verifier:

Hüdai Kara, PhD Metsims Sustainability Consulting Turkey/United Kingdom

Mandatory statements

The LCA for this EPD is conducted according to the guidelines of ISO 14040 and ISO 14044, the requirements given in Product Category Rules - Plastics in primary forms, 2010:16, version 3.01. The inventory for the LCA study is based on the 2021 production. The production plants are located in JSP International, Z. I. Le Bois Chevalier, Route de Francières, 60190 Estrées-Saint-Denis, France and in JSP International, Průmyslový park 11/158, 350 02 Cheb, Czech Republic.

For the development of this declaration, GaBi software with the latest version of characterization factors (May 2022) and the Ecoinvent database were used.

This EPD covers the Cradle to Gate stage with options – transport to customer in average distance.

The EPD certificate, its background data and the results will be used for business-to-business communications and are expected to be a reliable document for any customer of JSP International. "EPDs within the same product category but from different programmes may not be comparable."

Contact information

EPD owner:	JSP	JSP, www.ARPRO.com, sustainability@jsp.com
LCA author:	LCA Studio	Vladimír Kočí, PhD, Šárecká 5, 16000 Prague 6, Czech Republic, www.lcastudio.cz

References

GPI (2019). General programme instructions for the International EPD(R) system, version 3.01, The International EPD System: 78.

ISO 14025 (2009-11). "Environmental labels and declarations - Type III environmental declarations — Principles and procedures."

ISO 14040 (2006). "Environmental management- Life cycle assessment - Principles and Framework."

ISO 14044 (2006). Environmental management- Life cycle assessment - Requirements and guidelines. Geneva, Switzerland, International Organization of Standardization.

PCR 2010:16 (2019). PCR 2010: 16 Plastics in primary forms (Version 3.01), The International EPD System: 29. The International EPD® System The International EPD® System is a programme for type III environmental declarations, maintaining a system to verify and register EPD®s as well as

keeping a library of EPD®s and PCRs in accordance with ISO 14025. www.environdec.com.

Version 02

This information is provided as a convenience to customers and reflects the results of internal tests conducted on ARPRO samples. While all reasonable care has been taken to ensure that this information is accurate as of the date of issue, JSP does not represent, warrant or otherwise guarantee, expressly or impliedly, the suitability, accuracy, reliability or completeness of the information. ARPRO is a registered trade mark.

ARPRO.COM

